
Understanding the Recognition of Protein Structural
Classes by Amino Acid Composition
Ivet Bahar,1,2 Ali Rana Atilgan,2 Robert L. Jernigan,1* and Burak Erman2

1Molecular Structure Section, Laboratory of Experimental and Computational Biology, Division of Basic Sciences,
National Cancer Institute, National Institutes of Health, MSC 5677, Bethesda, Maryland
2Polymer Research Center, Bogazici University, and TUBITAK Advanced Polymeric Materials Research Center, Bebek
80815, Istanbul, Turkey

ABSTRACT Knowledge of amino acid
composition, alone, is verified here to be suffi-
cient for recognizing the structural class, a, b,
a1b, or a/b of a given protein with an accu-
racy of 81%. This is supported by results from
exhaustive enumerations of all conformations
for all sequences of simple, compact lattice
models consisting of two types (hydrophobic
and polar) of residues. Different compositions
exhibit strong affinities for certain folds. Within
the limits of validity of the lattice models,
two factors appear to determine the choice of
particular folds: 1) the coordination numbers
of individual sites and 2) the size and geometry
of non-bonded clusters. These two properties,
collectively termed the distribution of non-
bonded contacts, are quantitatively assessed
by an eigenvalue analysis of the so-called Kirch-
hoff or adjacency matrices obtained by con-
sidering the non-bonded interactions on a lat-
tice. The analysis permits the identification
of conformations that possess the same distri-
bution of non-bonded contacts. Furthermore,
some distributions of non-bonded contacts
are favored entropically, due to their high
degeneracies. Thus, a competition between
enthalpic and entropic effects is effective
in determining the choice of a distribution
for a given composition. Based on these
findings, an analysis of non-bonded contacts
in protein structures was made. The analysis
shows that proteins belonging to the four
distinct folding classes exhibit significant
differences in their distributions of non-bonded
contacts, which more directly explains the
success in predicting structural class from
amino acid composition. Proteins 29:172–185,
1997. r 1997 Wiley-Liss, Inc.†
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INTRODUCTION

The existence of a correlation between amino acid
composition and protein structural classes has been
the object of a number of studies during the last
decade,1–7 after the original proposals of Nishikawa
and Ooi8 and of Nakashima et al.9–11 and Chou.12

Knowledge of the fractions of the 20 amino acids is
now accepted to be sufficient, alone, for predicting
the structural class of a given protein, a, b, a1b, or
a/b.12 The level of accuracy is, however, still variable,
ranging from 60%13 to near 100%12 and clearly
depends on the definitions of structural classes and
the set of database structures considered for perform-
ing the analysis.

In the interest of gaining further insight into these
observations, we performed a singular value decom-
position (SVD) analysis of the amino acid composi-
tions of the same sets of proteins as used by Chou.12

Our use of the SVD technique for classifying proteins
follows the recent analysis of Berry et al.14 for
classifying words with regard to their frequency of
appearance in different texts. In their work, 16
words were classified according to their appearance
in 17 different texts. The distances between different
words were determined by SVD analysis, as well as
the distance between different texts. Interestingly,
two words may be near each other in the 16-
dimensional space even if they never co-occur in the
same text. Berry et al.14 also discussed the technique
of determining to which cluster of texts would a new
word, not belonging to the original set of 16 words, be
closest. If one replaces words with amino acids, and
texts with proteins, the intelligent information re-
trieval method of Berry et al.14 is exactly applicable
to the classification of proteins on the basis of their
amino acid compositions. The method simulta-
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neously groups proteins according to their amino
acid compositions and amino acids according to their
frequencies of occurrences in different classes. Appli-
cation of this procedure in the present work indicates
that compositions recognize the different structural
classes with 81% accuracy. The procedure and re-
sults are briefly outlined in the next section. Our
analysis is shown to be mathematically equivalent,
but conceptually simpler, compared with the Mahala-
nobis distance approach of Chou.

In the remaining part of the study, we search for
an answer to why composition should recognize
structure. Our examination of a-, b-, a1b-, and
a/b-proteins indicates that these classes do not ex-
hibit significant differences in their degree of com-
pactness, the average coordination number of resi-
dues being approximately constant in the different
classes. Thus, the differences in the selection of
certain classes by certain compositions are not corre-
lated with the average density of non-bonded con-
tacts. Instead, the distribution of non-bonded con-
tacts emerges as an important factor distinguishing
different classes. The distribution of non-bonded
contacts is defined at two levels of approximation.
On a coarse-grained level, the coordination numbers
of individual residues characterize the distribution
of non-bonded contacts. From a more detailed view-
point, the size and geometry of clusters of non-
bonded contacts, i.e., the spatial organization of
groups of closely interacting residues, characterize
the distribution of non-bonded contacts. The distribu-
tion of non-bonded contacts will be shown to be
uniquely determined by the eigenvalues of the Kirch-
hoff or adjacency matrices 15,16 characteristic of a
given tertiary structure.

To illustrate these issues, we analyze compact
lattice models. We use simple two- and three-
dimensional (3-D) compact lattice models of two
types of residues, H (hydrophobic) and P (polar).
Such simple models have proven useful in gaining
insights into the general structural characteristics of
proteins.17 A recent study that motivated our ap-
proach is that of Li et al.18 This study shows that only
a few compact configurations are energetically se-
lected by a large number of primary structures in a
simple cubic 3 3 3 3 3 lattice. These are named
‘designable structures‘ because a large number of
primary sequences fold into these structures. Exhaus-
tive enumerations of all conformations for all pos-
sible sequences of H and P residues were made by Li
et al.18 to extract the lowest energy fold for each
sequence and show that only a few structures were
selected in general. In the 3 3 3 3 3 lattice, there are
54 edges and 27 vertices on which residues may be
placed. Thus, 28 edges are unoccupied by bonds and
therefore form non-bonded H-H, H-P, or P-P con-
tacts, irrespective of the overall 3-D fold. Because the
total number of contacts is conserved, what could
then be the factor that drives the recognition of a

certain fold by a given sequence? Is it further pos-
sible to identify an energetically preferred fold by
considering all amino acid sequences of fixed compo-
sition? Is it possible to assign a degeneracy number
to particular folds, so that these will be favored from
entropic effects? These issues will be addressed in
Examination of Simple Lattice Models.

We will consider all possible conformations having
a given compact shape, and for each conformation
investigate the energetics of all permutations of H and P
residues, i.e., generate and evaluate all sequences
subject to a fixed 3-D fold and composition. Calcula-
tions will be repeated for different fractions of H and
P residues. The aim is to identify the rules that govern
the selection of certain structural classes by given
amino acid compositions. We show that it is possible
to cluster structures on the basis of their distribution
of non-bonded contacts. This classification is uniquely
determined by the eigenvalues of adjacency matri-
ces. Sequences of a fixed composition cannot distin-
guish between distinct 3-D folds, unless these folds
differ in their distribution of non-bonded contacts.

Finally, data bank structures19,20 are revisited to
explore the validity of the information inferred from
the simple lattice simulations. Proteins belonging to
different structural classes are verified to have signifi-
cant differences in their distributions of non-bonded
contacts, which may provide an explanation for the
recognition of structural classes by amino acid com-
position.

The main body of the paper consists of three parts:
In the first part, the determination of structural
classes by the SVD method according to their amino
acid compositions is presented. The question of why
a structural class can be recognized by amino acid
composition only, is addressed in the next section by
using complete enumeration of all sequences or
conformations of two-letter model chains on a lattice.
Finally, in the following section, protein structures
are revisited in the light of the indications given by
lattice simulations, to verify that the distributions of
non-bonded contacts do exhibit some net departures
in the four structural classes. In the Conclusion, the
major findings are summarized, with a discussion of
additional factors that may affect the recognition of
structural classes in proteins.

Determination of Structural Classes by SVD
Technique

Let us consider a set of n proteins. We represent
each protein i by a 19-dimensional array of fluctua-
tions in fractions of residues of different types

Dri 5 3
r1i 2 r1

r2i 2 r2

. . .

r19,i 2 r19

4 (1)
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Here the jth element of Dri is the difference between
the fraction rji of the amino acid of type j in the
protein i, and the average fraction of amino acid j in
the ensemble of n structures. We note only 19 of the
20 residue fractions constitute an independent basis
set, because the fractions sum up to unity. We refer
to Dri as the protein vector expressed in the original
19-dimensional space of the amino acid composi-
tions. Protein vectors of Equation (1) are organized
in a matrix A[193n] of size 193n as

A[193n] 5 5 [Dr1 Dr2 Dr3 . . . . Drn] (2)

the subscript in brackets denoting the size of the
matrix.

First, the A matrix of Equation (2) is constructed
for a training set of 120 non-homologous proteins
that were selected in previous works.3,5,21 This set
comprises 30 proteins from each structural class.
The definitions given in previous work3,12 are adopted
here for the four folding classes: a-proteins have
more than 40% of their residues participating in
a-helices and less than 5% in b-sheets. b-Proteins
have #5% of residues in a-helices and $40% in
b-sheets. a1b-proteins consist of two separate do-
mains, a and b; more than 15% of their residues are
in a-helices, and more than 15% in b-sheets with
60% antiparallel b-sheets. Finally, a/b-proteins have
$15% of residues in a-helices and $15% in b-sheets,
with .60% parallel b-sheets.

A structural class is represented by the variable j.
First, the average composition vector or the so-called
norm is calculated for each j. Then, the SVD method
outlined in the Appendix is applied to each subset of
n 5 30 proteins to determine the singular space
representations of the protein vectors. The distances
di(j) of a protein from the four type j 5 a, b, a1b, and
a/b of structural classes are found from [see Eq. (A3)]

di
2 (j) 5 Dr̂i (j) ? Dr̂i(j) 5 Dri

T (j) S21 (j) Dri(j) (3)

where S(j) is the covariance matrix corresponding to
structural class j, as defined in by Equations (A4)
and (A5) in the Appendix. The smallest of the four
di(j) values obtained for each protein determines the
structural class of that protein. Application of Equa-
tion (3) to all proteins in the training set verified that
this criterion was satisfied with an accuracy level of
98%, in parallel with Chou’s calculations.3,5

A summary of the results is given in Table I.
Figure 1 illustrates the clustering of proteins of
different classes. Here, the projections of 30 a-
proteins and 30 b-proteins onto the plane spanned
by the dominant singular directions u1 and u2 are
displayed. Interestingly, these two dominant singu-
lar directions, alone, provide a sufficiently accurate
clustering of the two types of structural classes.
Classes a1b and a/b are not shown here for clarity,

their loci being almost evenly distributed over both
regions of the plane.

In the second stage of calculations, the predictive
power of the method is tested for 62 unknown
proteins. The covariance matrices already deter-
mined for the four classes of protein structures, S(a),
S(b), S(a1b), and S(a/b) are directly used. Applica-
tion of Equation (3) to the set of unknown proteins is
shown to predict correctly the structural class of 81%
of the proteins, on average. The prediction rates for
the a, b, a1b, and a/b classes are 67, 91, 81, and
67%, respectively (Table I). The list of the distances
di(j) for all test proteins i with respect to the four
classes j 5 a, b, a1b, and a/b is available as
Supplementary Material.

We note that a higher accuracy level (greater than
90%) was reported by Chou and collaborators,3–5 al-
though the method used in their calculations is math-
ematically identical to ours (seeAppendix). The average
compositions for the four structural classes were differ-
ent in the two studies, despite the use of the same set
of proteins. From our communication with this group,
the origin of this puzzling difference between our
results and theirs was found to be the use of different
sets of data files, intact Brookhaven PDB in our case,
and a form modified for use in DSSP in theirs. Their
files generally contained fewer residues compared
with intact PDB files, which led to differences in
accuracies. Otherwise, the two methods were equiva-
lent, as explained in the Appendix, and identical
success rates were obtained upon the application of
either method to the same set of input files.

Correct clustering of these classes necessitates the
consideration of all of the 19 dimensions of the
singular space. For example, if only identification of
hydrophobic and polar residues were sufficient to
classify proteins into their structural classes, then
the minimal basis for SVD would be 2. Our analysis
showed that the minimal basis is 19, i.e., the full set
of 20 residues must be considered to achieve the
highest accuracy level. Neglect of one or more types

TABLE I. Performance of SVDAnalysis of Protein
Structural Classes

Set
Structural

class
Success rates (%)*

p 5 19 p 5 18 p 5 10

Training a 100 100 90.0
Training b 100 100 86.7
Training a 1 b 96.7 86.7 63.3
Training a/b 93.3 86.7 36.7

AVG 97.5 93.3 69.2
Prediction a 66.7 44.4 55.5
Prediction b 90.1 95.5 81.8
Prediction a 1 b 81.0 50.0 40.9
Prediction a/b 66.7 66.7 22.2

AVG 81.0 67.7 54.8

*p is the number of distinct types of amino acids.
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of residues invariably results in a decrease in the
success rate. To check the suitability of simplified
representations of amino acid types for recognizing
structural classes, the success rates achieved by
projecting the problem to a lower dimensional space
than 19 have been explored. This is done in two
ways: 1) Residues were combined into groups, de-
pending on their chemical characteristics, or on their
size and shape resemblances, and the SVD analyses
were repeated with these reduced sets comprising
p , 20 representative types of amino acids. 2) A
subset of the small singular values lm (m . p), which
may represent the noise in the system,14 was re-
moved, and the matrices A and S were reconstructed
with the remaining p dominant singular values by
using Equation (A6). A systematic decrease in the
success rate was observed with decreasing P, indicat-
ing that the detailed description of the protein
composition in terms of the 20 different types of
amino acids, or the 19-dimensional space of amino
acid fractions, is required for achieving the best
recognition of structural classes. For illustrative
purposes, the fractions of correctly predicted pro-
teins for different subsets of singular values, p 5 18
and 10, are presented in the last column of Table I,
showing the systematic decrease in accuracy levels
with the use of p , 19.

An important merit of SVD analysis is the possibil-
ity of identifying clusters of amino acids, in parallel

with the structural classification of proteins. This is
similar to the clustering of words from the analysis
of text or words by Berry et al.14 The jth element of ui

may be interpreted, for example, as the projection of
the jth residue to the ith basis vector of the singular
space. Suppose one considers the subspace spanned
by the three dominant singular directions u1, u2, and
u3, i.e., the first three columns of U[19319]. One can
readily locate the position of all types of residues in
that subspace. Such a map reveals the distances
between different types of residues, insofar as their
fraction is effective in recognizing a structural class.
Residues playing a comparable role in recognizing a
structural class are closer to each other, whereas
those distinguished by their unique identities are
isolated.

Figure 2 illustrates the loci of amino acids ob-
tained from the SVD of the complete set of 120
training proteins, projected into the space spanned
by u1, u2, and u3. We note that the charged residues
Lys, Glu, and Arg, the hydrophobic residue Leu, and
the small residues Gly and Ala are distinguished by
their distinct loci. The residues His, Tyr, Phe, Pro,
and Trp aggregate into a cluster, in which Met and
Ile, and on a broader scale Gln, Cys, Asn, and Asp
participate. Ser is closest to Gly and Thr, whereas
Ala is closest to Val, in good agreement with the
known properties of these residues.

Fig. 1. Projection of proteins onto the frame spanned by the two principal axes u1 and u2. Sixty
test structures are displayed, of which 30 are a-proteins (C) and 30 b-proteins (●).
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How Does Composition Recognize Structural
Class? Examination of Simple Lattice Models
An illustrative example

Let us first consider the three structures (a)–(c)
displayed in Figure 3. These form the complete set of
distinct conformations that may be assumed by a
model protein of N 5 9 residues confined to a 3 3 3
square lattice.16 Suppose we want to identify the
most stable structure among them. The drive for
maximizing the total number of non-bonded con-
tacts, which is a plausible criterion for selecting a
given fold, is of no utility here, because all three
structures are subject to the same number of non-
bonded contacts (shown by the dashed lines). On the
other hand, we note that residues in conformations
(a) and (b) have the same distribution of coordination
numbers: mainly, six vertices experience one non-
bonded contact (z 5 1) each, and one residue is
subject to z 5 2 contacts. The conformation (c), on the
other hand, is distinguished by five vertices with
coordination number z 5 1 and one by z 5 3. The
corresponding distributions of non-bonded contacts
may be designated as 521, 166 and 531, 156 , respectively.
Therefore, two distinct distributions of non-bonded
contacts are discerned here, insofar as the coordina-
tion numbers of individual residues are concerned.

These will be referred to as distributions of non-
bonded contacts I and II, respectively.

Let us next turn our attention to the selection of
one of the two distributions of non-bonded contacts
by a particular amino acid composition. For simplic-
ity, two types of residues are considered: H and P.
Their interaction potentials are denoted as EHH, EHP,
and EPP. Let us suppose the composition of the model
protein is NH:NP 5 1:8, where NH and NP are the
respective numbers of residues of type H and P.

Fig. 2. Loci of amino acids in the space spanned by the three principal axes u1, u2, and u3

determined from the SVD analysis of the matrix A. See Equation (2).

Fig. 3. Complete set of distinct conformations of nine-unit
chains on a 3 3 3 square lattice (except mirror images). Non-
bonded contacts are shown by the dashed lines. Conformations
(a) and (b) have identical distributions of coordination numbers
(distribution I): one unit has two non-bonded contacts in these
conformations, and six units have a single non-bonded contact.
Conformation (c), on the other hand, is distinguished by one unit
with three non-bonded contacts, and five with a single contact, and
thus represents another distribution (distribution II).
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Inasmuch as we are interested in the recognition of a
structure by a composition, irrespective of the particu-
lar primary sequence, all permutations of H and P
residues subject to the fixed composition will be
taken into consideration. Precisely, an average over
all C(NH, NP) B N!/NH!NP! combinations for fixed NH

and NP will be examined. For the case NH 5 1, for
example, nine sequences—or primary structures—
are possible, some of which are energetically more
favorable than others when subjected to the distribu-
tion of non-bonded contacts I or II. In particular, the
sequence P8H will prefer the distribution II, pro-
vided that EHP , EPP. This preference will also be
reflected in the weighted average over all nine
primary structures threaded onto (II), resulting in a
preference for the composition NH:NP 5 1:8 for
distribution of non-bonded contacts II. Clearly, the
situation will be reversed, i.e., distribution I will be
preferred, when NH:NP 5 8:1, given that EHH , EHP.

In addition to this energetic effect, the number of
conformations with a given distribution of non-
bonded contacts, which we may simply term the
degeneracy of a given distribution of non-bonded
contacts, affects the choice of a distribution by a
given composition. In the present simple example,
the distribution of non-bonded contacts I comprises
two conformations, (a) and (b), and in the absence of
interaction energies, it is two times more probable
than the distribution of non-bonded contacts II. This
is the entropic contribution. It determines the pre-
ferred distribution of non-bonded contacts for homo-
geneous, all H, or all P, chains. In the case of
heterogeneous chains, on the other hand, a competi-
tion between entropic and enthalpic effects is effec-
tive in setting the preference for a given distribution
of non-bonded contacts. The most probable distribu-
tions resulting from the two contributions are shown
in Figure 4 as a function of the composition of the
chain. The curve displays the probability of occur-
rence of the most probable distribution of non-
bonded contacts, which is either I or II depending on
the composition, as indicated by the labels. It is
interesting to observe the change in preference from
one distribution of non-bonded contacts to another
with changing composition. H-H, H-P, and P-P inter-
action energies are taken here as EHH 5 23.0 RT,
EHP 5 21.2 RT, and EPP 5 0, in conformity with the
structure-derived potentials for residues of type H
and P.22,23 This simple example shows that it is
possible to group conformations into sets on the basis
of their distribution of non-bonded contacts and
identify the distributions of non-bonded contacts
that are preferred for particular amino acid composi-
tions. However, this analysis is not feasible with
increased sizes of the chains, or in real proteins,
unless a more systematic method is adopted. Such a
method, applicable to longer chains, both on- or
off-lattice, is presented next.

General approach

As a first step, an exhaustive enumeration of all
conformations compatible with a given 3-D shape is
made.24 We note that in an n 3 n 3 n cubic lattice all
conformations have equal numbers of contacts, n 1
n1/3 2 2n2/3, and the factor distinguishing the confor-
mations is their distribution of non-bonded contacts,
i.e., the distribution of coordination numbers, and
the size and geometry of clusters of sites in close
contact.

Next, those conformations having identical distri-
butions of non-bonded contacts should be identified
and assigned to different subsets. The characteriza-
tion of the distributions of non-bonded contacts is
conducted by the eigenvalue analysis of the corre-
sponding Kirchhoff matrix A. The latter is a symmet-
ric matrix of order m, for a chain comprising m
interaction sites. The elements of A are defined as

Aij 5 5
1 if i Þ j and rij # rc

0 if i Þ and rij . rc

2oAij if i 5 j
6 (4)

The last summation in Equation (4) is done over all
off-diagonal elements on a given column (or row). rij

is the distance between sites i and j, and rc is a cutoff
separation defining the range of non-bonded con-
tacts. Conformations having the same distribution of
non-bonded contacts yield an identical set of eigenval-
ues upon transformation of their Kirchhoff matrices
A. We note that the matrix A is similar in form to the

Fig. 4. Probability of occurrence of the two distributions I and II
as a function of the composition of the nine-unit chain on the 3 3 3
square lattice. The abscissa represents the number NH of hydro-
phobic residues. Distribution I is preferred over II at higher
concentrations 3 # NH # 8. At low concentrations of hydrophobic
residues and in the extreme case of one component chains,
distribution II is preferred. The two distributions are equally
probable at NH 5 2.
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adjacency matrices of graph theory,15,16 except for the
definition of the diagonal elements as the negative
sum of the other corresponding row (or column)
elements. In this respect, A is equivalent in form to
the rate matrices controlling the transitions between
communicating states of multivariate stochastic pro-
cesses (see for example Ref. 25).

Let us suppose that the eigenvalue analysis of the
overall set of V conformations leads to W distinct
distributions of non-bonded contacts. For conve-
nience, these are designated as 5Fk6, 1 # k # W. Each
of them comprises a total of gk conformations, such
that Skgk 5 V, i.e., gk is the degeneracy of the kth
distribution of non-bonded contacts. To determine
the distribution of non-bonded contacts preferred by
a given composition (NH, NP), all combinations C(NH,
NP) of sequences are threaded onto one representa-
tive conformation chosen from each subset 5Fk6. And
an average energy is assigned to each distribution of
non-bonded contacts on the basis of its total non-
bonded energy averaged over all sequences as

E5Fk;NH6 5

o
p

Ep5Fk6 exp [2Ep5Fk6/RT

o
p

exp [2Ep5Fk6/RT
(5)

where 1 # p # C(NH, NP). These are combined with
the degeneracies gk, to estimate the probability P5Fk;
NH6 of recognition of the kth distribution of non-
bonded contacts by the composition (NH, NP),

P5Fk; NH6 5
gk exp [2E5Fk, NH6/RT]

o
K

gk exp [2E5Fk, NH6/RT]
(6)

We note that in the special case EHH 5 EHP 5 EPP 5
0, the subset with the highest degeneracy number
will invariably be selected by all compositions.

Results for H-P model chains on
3 3 2 3 2 lattice

In parallel with the procedure described above, all
compact conformations are first generated on the 3 3
2 3 2 lattice. The following efficient method is
adopted here for the exhaustive enumeration of all
conformations. There are nv 5 12 vertices and ne 5
20 edges, and consequently nc 5 ne 2 nv 1 1 5 9
non-bonded contacts in the 3 3 2 3 2 lattice. In the
absence of constraints, the number N of ways of
distributing the nc contacts over ne edges is N 5
ne!/(ne 2 nv 1 1)!(nv 2 1)! 5 167,960. We note that
there are two different types of points in the 3 3 2 3
2 lattice: 1) lattice points at a corner and 2) lattice
points along an external edge, but not at a corner.
The coordination numbers of these two types cannot
be more than 2 and 3, or less than 1 and 2, respec-
tively. One has to reject those configurations that

violate the stated maximum and minimum contact
number conditions. In addition to these single site
constraints, those conformations that lead to the
isolation of one edge or face must be eliminated.
Considering these restrictions, the total number of
conformations generated on a 3 3 2 3 2 lattice
reduces to 680.

In the second stage, Kirchhoff matrices are deter-
mined for each conformation. rc is taken as the
length of a lattice edge. The eigenvalue analysis of
these matrices lead to W 5 21 distinct distributions
of non-bonded contacts, each of them characterized
by a unique set of eigenvalues. These are presented
in Table II. The second column gives the degeneracy
gk of each distribution of non-bonded contacts, and
the succeeding nine columns are the corresponding
non-zero eigenvalues li, 1 # i # 9. The probabilities
of selection of these distributions of non-bonded
contacts by the model chains of different composi-
tions are listed in Table III. It is interesting to note
from the two tables that the distributions of non-
bonded contacts that are distinguished by their
larger l1 values also exhibit the largest probabilities
of being selected by a particular composition. This is
consistent with the fact that the departure of the
eigenvalues from a uniform distribution reflects the
singularity of the distribution of non-bonded con-
tacts, and those distributions of non-bonded contacts
exhibiting more singular, unique distributions are
more readily recognized by a given amino acid
composition.

We note that three distributions of coordination
numbers are accessible on a 3 3 2 3 2 lattice: A: 532,
22, 186; B: 531, 24, 176; and C: 526, 166, where the
exponents indicate repeating coordination numbers.
However, the coordination numbers are not the only
quantity distinguishing a given distribution of non-
bonded contacts; the size and geometry of non-
bonded clusters also contribute to the definition of a
given distribution of non-bonded contacts and leads
to 21 distinct subsets, identified by the eigenvalue
analysis. This feature is illustrated in Figure 5. Here
two conformations with identical distributions of
coordination numbers, 531, 24, 176, but different geom-
etries are displayed. The types of coordination num-
bers corresponding to each distribution of non-
bonded contacts are indicated in parentheses in the
first column of Table III. The fact that these assign-
ments closely conform with the hierarchy of eigen-
value distributions also indicates that the coordina-
tion numbers play a dominant role in defining the
eigenvalue distributions (or the distributions of non-
bonded contacts), but a finer level characterization of
the structures in each group (A, B, or C) is achieved
by the eigenvalue analysis of the Kirchhoff matrices.

Finally, the probabilities of selection of the coordi-
nation number distributions A, B, and C as a func-
tion of composition are shown in Figure 6. In parallel
with Figure 4, the preferred distributions are con-
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nected by a boldface curve. It is interesting to
observe the strong dependence of the coordination
type preferences on composition: B is selected when
NH 5 1 and 5 # NH # 9; the range 2 # NH # 4
exhibits a preference for A in spite of the low
degeneracy number (40) of this class, and finally, the

presence of a large proportion of hydrophobic resi-
dues 10 # NH # 12 leads to a preference for C.

Revisiting PDB Structures

Having extracted this information from lattice
simulations, it is interesting to go back to real

TABLE II. Degeneracies (gk) and Eigenvalues (li) for Subsets of 3 3 2 3 2 Lattice
Conformations Having Identical Distributions of Non-Bonded Contacts

k gk l1 l2 l3 l4 l5 l6 l7 l8 l9

1 8 4.81 3.00 2.53 2.00 2.00 2.00 1.00 0.66 0.00
2 16 4.68 3.41 2.33 2.00 2.00 2.00 0.73 0.58 0.25
3 16 4.64 3.41 2.72 2.00 2.00 1.41 1.00 0.58 0.22
4 16 4.56 3.00 2.00 2.00 2.00 2.00 2.00 0.44 0.00
5 16 4.48 3.00 2.69 2.00 2.00 2.00 1.00 0.83 0.00
6 32 4.44 3.14 2.62 2.00 2.00 2.00 1.18 0.38 0.24
7 16 4.41 3.00 2.62 2.62 2.00 1.59 1.00 0.38 0.38
8 64 4.34 3.41 2.47 2.00 2.00 2.00 1.00 0.58 0.19
9 32 4.33 3.10 3.00 2.27 2.00 1.40 1.00 0.63 0.26

10 48 4.30 3.41 2.62 2.00 2.00 2.00 0.70 0.58 0.38
11 32 4.23 3.36 3.00 2.18 2.00 1.00 1.00 1.00 0.22
12 32 4.17 3.62 2.62 2.31 2.00 1.38 1.00 0.52 0.38
13 16 4.00 3.41 2.00 2.00 2.00 2.00 2.00 0.58 0.00
14 8 4.00 3.00 3.00 2.00 2.00 2.00 1.00 1.00 0.00
15 64 3.85 3.41 2.77 2.00 2.00 2.00 1.23 0.58 0.15
16 48 3.80 3.25 3.00 2.44 2.00 1.55 1.00 0.75 0.20
17 32 3.73 3.00 3.00 3.00 2.00 1.00 1.00 1.00 0.27
18 96 3.73 3.41 3.00 2.00 2.00 2.00 1.00 0.58 0.27
19 32 3.62 3.62 2.62 2.62 2.00 1.38 1.38 0.38 0.38
20 48 3.62 3.41 3.00 2.62 2.00 1.38 1.00 0.58 0.38
21 8 3.41 3.41 3.41 2.00 2.00 2.00 0.58 0.58 0.58

TABLE III. Probabilities of Distinct Distributions of Non-Bonded Contacts for H-P Model Chains on a 3 3 2 3 2
Lattice, as a Function of Composition*

k† P5Fk, 16 P5Fk, 26 P5Fk, 36 P5Fk, 46 P5Fk, 56 P5Fk, 66 P5Fk, 76 P5Fk, 86 P5Fk, 96 P5Fk, 106 P5Fk, 116 P5Fk, 126

1 (A) 0.029 0.093 0.125 0.293 0.149 0.071 0.040 0.026 0.019 0.015 0.013 0.012
2 (A) 0.058 0.188 0.250 0.152 0.103 0.069 0.050 0.039 0.032 0.028 0.025 0.024
3 (A) 0.058 0.186 0.166 0.142 0.106 0.072 0.052 0.040 0.033 0.028 0.025 0.024
4 (B) 0.035 0.032 0.039 0.062 0.143 0.107 0.069 0.049 0.036 0.029 0.024 0.024
5 (B) 0.035 0.025 0.027 0.044 0.047 0.046 0.041 0.035 0.030 0.027 0.024 0.024
6 (B) 0.071 0.065 0.068 0.057 0.079 0.085 0.078 0.068 0.059 0.053 0.048 0.047
7 (B) 0.035 0.032 0.029 0.017 0.016 0.017 0.019 0.021 0.023 0.024 0.024 0.024
8 (B) 0.142 0.101 0.092 0.088 0.154 0.175 0.162 0.138 0.120 0.107 0.097 0.094
9 (B) 0.071 0.050 0.044 0.030 0.031 0.034 0.039 0.044 0.046 0.047 0.048 0.047

10 (B) 0.106 0.075 0.053 0.030 0.037 0.047 0.057 0.065 0.069 0.071 0.072 0.071
11 (B) 0.071 0.036 0.030 0.026 0.030 0.035 0.040 0.044 0.047 0.047 0.048 0.047
12 (B) 0.071 0.036 0.022 0.015 0.023 0.031 0.039 0.044 0.047 0.047 0.048 0.047
13 (C) 0.010 0.004 0.003 0.004 0.007 0.018 0.028 0.029 0.027 0.025 0.023 0.024
14 (C) 0.005 0.002 0.002 0.002 0.007 0.038 0.029 0.023 0.017 0.014 0.011 0.012
15 (C) 0.039 0.016 0.013 0.012 0.027 0.074 0.112 0.117 0.109 0.101 0.091 0.094
16 (C) 0.030 0.011 0.008 0.006 0.012 0.021 0.034 0.048 0.059 0.065 0.068 0.071
17 (C) 0.020 0.007 0.004 0.003 0.004 0.006 0.010 0.016 0.025 0.036 0.046 0.047
18 (C) 0.059 0.022 0.015 0.011 0.017 0.034 0.064 0.096 0.118 0.129 0.137 0.141
19 (C) 0.020 0.007 0.005 0.003 0.005 0.011 0.021 0.032 0.039 0.043 0.046 0.047
20 (C) 0.030 0.010 0.006 0.003 0.004 0.007 0.013 0.023 0.037 0.054 0.068 0.071
21 (C) 0.005 0.002 0.001 0.000 0.001 0.001 0.002 0.004 0.006 0.009 0.011 0.012

*Compositions are indicated by the arguments of the probabilities; P5Fk, n6 represents the probability of selection of the kth by the
chain containing n residues of type H, 1 # n # 12.
†Letters in parentheses refer to the coordination number distributions A: 532, 22, 186; B: 531, 24, 176; and C: 526, 166.

179AMINO ACID COMPOSITION DISCRIMINATES PROTEIN CLASS



protein structures and check whether the distribu-
tion of coordination numbers, for example, differs in
the different structural classes. Precisely, do the four
structural classes exhibit differences in their coordi-
nation number distributions? Can we also trace
some differences in the distribution of non-bonded
contacts by eigenvalue analysis of Kirchhoff matri-
ces?

Coordination numbers

The following analysis is done for 40 proteins from
each structural class. First, the distributions of
coordination numbers, P5z; L6, are evaluated for all
classes, considering all residues, by using a set of 40
proteins from each class. The method conducted by
Miyazawa and Jernigan26 for different residues by
using 1100 data bank structures is followed. Mainly,
the numbers z of Ca atoms in the neighborhood (r #
7.0 Å) of a central Ca are analyzed. The frequencies
of the different coordination numbers are examined.
Here all Ca atoms are included, the degree of solvent
exposure or burial of residues being also a character-

istic of structural classes that needs to be taken into
consideration. The results are displayed in Figure 7
as a function of the coordination number z, for the
four classes. a and b classes exhibit the most distinct
behavior. The results for a1b and a/b lie between
the curves for a and b proteins.

The results show that the distribution of coordina-
tion numbers of the two classes exhibit significant
departures from each other. a-proteins are distin-
guished by their large proportion of z 5 6 contacts;
b-proteins are distinguished by the most frequent
occurrence of coordination number z 5 4. These most
probable coordination numbers may be attributed to
residue pairs (i, i 6 1), (i, i 6 3), (i, i 6 4) in a-helices,
and pairs (i, i 6 1), (i, i 6 2) in b-strands. It is to be
noted that the individual proteins yield similar
curves to the two mean curves shown in Figure 7,
thus verifying the reproducibility of this analysis.

The examination of coordination number is not
sufficient alone for the discrimination of all struc-
tural classes, particularly for distinguishing the
classes a/b and a1b. In fact, a further property, the
geometry of non-bonded contacts, in addition to
coordination numbers, was pointed out in the above
arguments to characterize the distribution of non-
bonded contacts of distinct structural classes. Dis-
tinct geometries of non-bonded contacts may be
identified by the eigenvalue analysis of Kirchhoff
matrices, which will be considered in the next subsec-
tion, indicating simply the differences in contact map
patterns.

Fig. 5. Two distinct distributions of non-bonded contacts of
12-unit chains on the 3 3 2 3 2 lattice. Units are indexed from 1 to
12, for clarity. Non-bonded contacts are shown by the dashed
lines. Both conformations exhibit the same distribution of coordina-
tion numbers, one unit has three non-bonded contacts, four units
have two non-bonded contacts, and seven experience a single
contact. However, their coordination geometries differ.

Fig. 6. Probabilities of the three coordination number distribu-
tions A, B, and C on the 3 3 2 3 2 lattice, as a function of the
composition of H-P model chains. The abscissa represents the
number NH of hydrophobic residues. The preferred coordination
types are connected by a boldface curve.
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Eigenvalue distributions

In lattice simulations, we have characterized the
distribution of non-bonded contacts in a specific
conformation by the eigenvalues of the correspond-
ing Kirchhoff matrix A [Eq. (4)]. We now repeat the
same analysis for proteins extracted from the PDB.
Ca atoms located in the neighborhood (r # 7.0 Å) of a
central Ca atom are considered. The percent contribu-
tion of the dominant 12 eigenvalues for each struc-
tural class are shown in Figure 8 as a function of
eigenvalue index. The curves are obtained by averag-
ing over 40 proteins for each class. The results for the
a/b- and a1b-proteins exhibit strong departures
from each other and therefore provide a useful
means of identifying the two classes. The curves for
the a-and b-proteins, on the other hand, are approxi-
mately superimposable.

The departure of the curve for a/b-proteins from
that of a1b-proteins may be explained as follows.
The Kirchhoff matrix for a given protein is analogous
in form to a contact map, assuming all residue pairs
whose a-carbons are separated by 7 Å or less to be in

contact. Helices lead to entries parallel to the diago-
nal, shifted by three or four rows or columns with
respect to the main diagonal (245°). b-strands, on
the other hand, are represented by arrays parallel or
perpendicular to the main diagonal, depending on
whether they are aligned parallel or antiparallel,
respectively, to each other. As a result, the contact
map, and/or the Kirchhoff matrix, for an a/b-protein
consists predominantly of arrays parallel to the main
diagonal, whereas that of a1b-proteins comprise
segments both parallel and perpendicular to the
main diagonal. Because of their more similar geom-
etries, the eigenvalues of the former structure ex-
hibit higher degeneracy numbers, compared with those
of the latter. Repeated eigenvalues lead to horizontal
segments in the eigenvalue distributions curves,
hence the lower slope of the a/b-curve in Figure 8,
compared with that of the curve for a1b-proteins.

DISCUSSION AND CONCLUSION

There are well-established methods27 for predict-
ing secondary structures in proteins. It is clear that

Fig. 7. Coordination number distributions for different structural classes. The curves represent
the averages over all Ca’s belonging to the indicated structural class. The distribution curves are
normalized over the range 1 # z # 12.
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knowledge of structural class is an important step in
protein folding problem in that it can improve the
accuracy of secondary structure prediction28 or re-
duce the conformational space during the search of
the tertiary structure in globular proteins. The accu-
rate prediction of structural classes, or secondary
structural content, from amino acid composition
alone is, in this respect, an important issue, which
has been the object of a number of recent stud-
ies.3,5,12,13,29 In the present study, our objectives have
been to validate the relationship between amino acid
composition and structural class by using a SVD
method and to gain insights into the physical origin
of the recognition of protein structural classes by
amino acid composition.

Within the scope of these objectives, a straightfor-
ward method for the identification of structural
classes is presented. This is based on the SVD of
19-dimensional protein vectors, the elements of which
are the fractions of the amino acids present in the
protein. The method automatically clusters proteins
of different structural classes into different regions
of a 19-dimensional space. The axes of the space as

found by SVD maximize the distance between the
proteins. One advantage of the method is that it also
permits grouping residues in relation to their partici-
pation in different structural classes.

Neglect of one or more singular directions leads to
a systematic decrease in the accuracy (Table I). A
minimal basis set of all the 19-residue fractions is
required for achieving the highest accuracy level
when the four classes are considered together. The
observation from Table I that the prediction for
a-helices is better when 10 parameters are used is
contrary to this conclusion and is thought to be an
insignificant coincidence. We have also tried to im-
prove the accuracy level by introducing more informa-
tion about the amino acid composition of proteins.
For example, the residue pairs located at positions i
and i13 were examined, and the proportions of H-H,
H-P, and P-P pairs were added to protein vectors as
additional information on the sequence composition.
However, such considerations lead to a marginal
increase (up to 82%) in the prediction level, which
does not justify further elaboration in that direction.
A new analytic vector decomposition technique ex-

Fig. 8. Distribution of eigenvalues of Kirchhoff (contact) matrices for each structural class. The
dominant 12 eigenvalues li, 1 # i # 12, are displayed. Curves represent the average behaviors
obtained from the transformation of the Kirchhoff matrices of non-bonded contacts for 40 proteins
from each class.
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ploring the limits of secondary structure content
predictions relying solely on amino acid composition
of the query protein, also indicates that couplings
between amino acids do not significantly improve the
success rates.29

One possible way of increasing the prediction rates
of the present approach could be to construct more
detailed protein vectors, in which data from Dayhoff
substitution matrices are included in addition to
amino acid fractions. Substitution matrices recently
obtained30 for amino acids at spatially conserved
locations may be used, for example, for this purpose.
It is interesting to notice that the charged residues
are clustered therein in the same group, regardless
of the type of their charge, in contrast to other
substitution matrices. The location on the protein
and consequently the possible types of non-bonded
contacts with the environment appear to dominate
in this behavior, which suggests that the combina-
tion of these substitution matrices with amino acid
fractions may be useful in structural class predic-
tions.

It should be noted that the apparent relatively
high accuracy level (81%) attained in the present
study, which exceeds the success rates (75%) of
structural class predictions using traditional second-
ary structure prediction techniques (including
those6,31 combining evolutionary information and
neural networks) may be due to some biases, as
pointed out by Eisenhaber et al.13 These are for
example, the preselection of test sets, which may not
be adequately representative of all unrelated pro-
teins, the adoption of structural class definitions
with extreme secondary structure contents, which
thereby remove about 35% of the PDB structures
without any class assignment, the ambiguities in the
definitions of a1b and a/b classes having some
b-sheets, including both parallel and antiparallel
strands. In this respect, the structural class defini-
tions proposed by Nakashima et al.11 are pointed13

out to be more appropriate. An extensive analysis of
different methods led Eisenhaber and collaborators13

to the conclusion that knowledge of amino acid
composition alone cannot lead to a success rate
higher than 60%. Nevertheless, these analyses show
that amino acid composition does recognize struc-
tural classes to an accuracy level comparable with
that of the much more complex secondary structure
prediction methods. And in the second part of our
study, we sought an explanation for the ‘composition-
recognizes-class property‘ by a thorough examina-
tion of simple model chains on a lattice.

In the interest of gaining an understanding into
the origins of the selectivity of structural classes by
amino acid composition, exhaustive enumerations of
all conformations and all primary structures for
simple H-P model chains were performed. These
calculations revealed that the distribution of non-
bonded contacts in a given 3-D fold is the important

parameter controlling its recognition by an amino
acid composition. For example, structures that per-
mit the burial of all hydrophobic residues at a given
composition, will be selected by those compositions of
residues.

For compact structures permitting the same num-
ber of non-bonded contacts, the distribution of non-
bonded contacts physically refers to the coordination
number distributions and the size and geometry of
clusters of non-bonded contacts. Mathematically, the
distribution of non-bonded contacts is uniquely ob-
tainable from the eigenvalue distribution of the
Kirchhoff connectivity matrix for a given protein. In
the absence of energetic effects, the selection of a
particular distribution of non-bonded contacts scales
with its degeneracy, i.e., the number of conforma-
tions exhibiting the same eigenvalue distribution,
whereas for heterogeneous systems, enthalpic effects
will also come into play, in addition to this entropic
effect.

In view of the complexity and heterogeneity of
protein structures, a one-to-one identification of a
structural class with a given well-defined distribu-
tion of non-bonded contacts is not possible. Instead,
each class exhibits a broad range of distributions of
non-bonded contacts. However, examination of PDB
structures do confirm that proteins belonging to
different structural classes differ in the coordination
number distributions of their residues, on average,
and in the eigenvalue distributions of their adja-
cency matrices, as illustrated in Figures 7 and 8.

Li et al.18 pointed out that certain 3-D structures
that are ‘protein-like‘ with secondary structures and
symmetries are thermodynamically more stable than
ordinary structures, as evidenced by their selection
as the lowest energy state by a significantly large
number of primary structures. These structures are
thus easy to design and are stable against muta-
tions. Here we go one step further and show that
certain distributions of non-bonded contacts, rather
than particular detailed 3-D structures, may be
selected. And the amino acid composition, rather
than the detailed primary structure, may be suffi-
cient for the selection.
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APPENDIX
SVD Method for Characterizing Structural
Classes on the Basis of Amino Acid
Composition

The protein vectors, Dri, given by Equation (1), are
arranged in a matrix A[193n]. The rows of this matrix
identify the 19 independent residue fractions, and
the n columns refer to the proteins under investiga-
tion. The matrix A is decomposed into a product of
three matrices by the SVD technique as

A[193n] 5 U[19319] L [19319] V[19 3 n]
T (A1)

where U and V are the matrices of the left singular
vectors (or principal axes) (ui), and right singular
vectors (vi), respectively, of A, L is the diagonal
matrix of the singular values. The details of the SVD
technique may be found in Reference 14. The col-
umns of VT are the protein vectors Dr̂i expressed in
the singular frame spanned by the axes ui, 1 # i #
19. The superposed hat in Dr̂i designates the repre-
sentation in the singular space. Thus, the matrix
L21UT when operated on A rotates each of the n
original protein vectors into Dr̂i following the expres-
sion

Dr̂i 5 L21 UT Dri (A2)

The singular space gives the best representation of
proteins insofar as their amino acid compositions are
concerned, the orthonormal axes ui being automati-
cally chosen to magnify the differences in composi-
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tion fluctuations. Thus, the distance di of protein i
from the center or the norm r̄ of a structural class is
best accounted for by

di 5 [Dr̂i j Dr̂i]1/2 (A3)

where the dot denotes the scalar product. If di is
small, then the protein i is similar to those participat-
ing in the considered class. The extent of similarity is
of course based on which criterion the comparison is
made. In the present analysis, proteins are grouped
according to their residue fractions, whereas a simi-
lar analysis was performed by Rahman and Rack-
ovsky32 on the basis of 10 characteristic properties.

By classifying the residues and the proteins accord-
ing to the distance between their respective vectors,
it becomes possible to make a cluster analysis. We
note that the dot product in brackets in Equation
(A3) may be written as

Dr̂i j Dr̂i 5 Dri
TU L 22UT Dri 5 Dri

T S21 Dri (A4)

by using Equation (A2), and the covariance matrix S
defined by

S 5 A AT 5 U L22 UT. (A5)

The above two equations establish the connection
between our SVD analysis and the algorithm adopted
by Chou.3,5 The Mahalanobis distance,33 referred to
in the latter study, is nothing else than the distance
in the singular space defined by Equation (A3).

The singular values li of A are conventionally
written in descending order along the diagonal of L.
Equation (1) may be rewritten in terms of the p , 19
dominant singular values of A as

A[193n] 5 U[193p] L[p3p] V[p3n]
T (A6)

provided that the singular values lj in the range j .
p are negligibly small. In this approximation, the
analysis may be conducted in the p-dimensional
subspace of residues.
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