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Abstract: Energy minimization plays an important role in structure determination and analysis of proteins, peptides,
and other organic molecules; therefore, development of efficient minimization algorithms is important. Recently,
Morales and Nocedal developed hybrid methods for large-scale unconstrained optimization that interlace iterations of
the limited-memory BFGS method (L-BFGS) and the Hessian-free Newton method (Computat Opt Appl 2002, 21,
143–154). We test the performance of this approach as compared to those of the L-BFGS algorithm of Liu and Nocedal
and the truncated Newton (TN) with automatic preconditioner of Nash, as applied to the protein bovine pancreatic
trypsin inhibitor (BPTI) and a loop of the protein ribonuclease A. These systems are described by the all-atom AMBER
force field with a dielectric constant � � 1 and a distance-dependent dielectric function � � 2r, where r is the distance
between two atoms. It is shown that for the optimal parameters the hybrid approach is typically two times more efficient
in terms of CPU time and function/gradient calculations than the two other methods. The advantage of the hybrid
approach increases as the electrostatic interactions become stronger, that is, in going from � � 2r to � � 1, which leads
to a more rugged and probably more nonlinear potential energy surface. However, no general rule that defines the
optimal parameters has been found and their determination requires a relatively large number of trial-and-error
calculations for each problem.

© 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1222–1231, 2003
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Introduction

The interatomic interactions of biomolecules such as proteins and
nucleic acids are usually described by an empirical potential en-
ergy function (force field), which depends on the structure (geom-
etry) of the molecule and typically leads to a “rugged” energy
surface consisting of a tremendous number of local minima.1

Identifying the lowest-energy minima, in particular the global
minimum, is the goal of protein folding studies, where the energy,
rather than the free energy, is accepted as an approximate criterion
of stability. A more rigorous criterion is minimum harmonic free
energy, Fhar, where Fhar is obtained at an energy minimum from
the harmonic entropy, Shar, which is proportional to the determi-
nant of the Hessian, the matrix of second derivatives of the energy
with respect to the molecular coordinates.2–6 Calculation of the
Hessian at a minimum is also an essential part of a normal-mode
analysis.7

The above discussion already demonstrates the importance of
energy minimization in computational structural biology and the
need for developing efficient minimization algorithms. The com-
mon algorithms, such as conjugate gradients or Newton methods,
are of a local character, that is, they drive an initial molecular
structure to the closest energy minimum rather than to the global
one. However, the applicability of these methods is much wider
because most of the global optimization procedures, including our
local torsional deformation (LTD) method for cyclic molecules,8,9

are based on a large number of local energy minimizations (see,
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e.g., refs. 10–18). Therefore, attempting to optimize LTD, we
tested in a previous preliminary study several minimization algo-
rithms and found the limited-memory BFGS (L-BFGS)19 to be the
most efficient for a force field with an implicit solvation model9

[see eqs. (1) and (2) below] .
The experience gained thus far from treating various problems,

in particular large-scale unconstrained minimizations,20–23 is that
truncated Newton (TN)24–27 and L-BFGS are powerful optimiza-
tion methods that are more efficient than other techniques (see also
refs. 28–30). TN tends to blend the rapid (quadratic) convergence
rate of the classic Newton method with feasible storage and
computational requirements. The L-BFGS algorithm is simple to
implement because it does not require knowledge of the sparsity
structure of the Hessian or knowledge of the separability of the
objective function. Further, the amount of storage needed can be
controlled by the user. It has been found that, in general, TN
performs better than L-BFGS for functions that are nearly qua-
dratic, while for highly nonlinear functions L-BFGS outperforms
TN.31

These aspects and others are discussed in an excellent review
on minimization methods by Schlick,32 who together with Fogel-
son also programmed their own TN algorithm and included it in
the package TNPACK.26,27 This package enables the user to
supply a sparse preconditioning matrix that transfers the Hessian
into a matrix with more clustered eigenvalues, which in turn
enhances convergence. This implementation of TN differs from
that of Nash,25 which uses automatic preconditioning and has been
applied to a variety of problems with considerable success; the
latter has the advantage of easy portability because the precondi-
tioner does not have to be tailored to the specific problems at hand.
In her review, Schlick presents systematic efficiency comparisons
between several algorithms applied to the molecule deoxycytine
(87 variables) and to clusters of water molecules. For the former
system, TN with preconditioning is found to be the most efficient,
requiring �2 times less CPU time than L-BFGS with precondi-
tioning, while for the water clusters the picture is more complex.

Derreumaux et al.33 tested the efficiency of TN as applied to
peptides and proteins modeled by the CHARMM force field34

using an updated version of TNPACK. In this implementation, the
preconditioner is based on the short-range interactions, that is, the
bond stretching and bending, and the torsional potentials. It is
shown that for several molecules of sizes n � 12–1299 atoms
TNPACK with preconditioning outperforms the steepest-descent,
nonlinear conjugate gradient, adapted basis Newton–Raphson, and
Newton–Raphson algorithms installed in the CHARMM pack-
age.33 More recently, Xie and Schlick showed that for molecules
of sizes n � 22–2030 atoms TNPACK requires less CPU time than
both CG and L-BFGS and reaches low gradient norms.35,36

Because the performance of minimization algorithms depends
to a large extent on the system and the cost function used,37 we
have carried out recently38 a systematic performance study of the
algorithms, L-BFGS of Liu and Nocedal,19 TN with automatic
preconditioner of Nash,25 and the nonlinear conjugate gradients
(CG) of Shanno and Phua.39 These algorithms were applied to
penta- and heptacyclic peptides and the 58-residue protein bovine
pancreatic trypsin inhibitor (BPTI) modeled by two energy func-
tions. One is the GROMOS87 united atoms force field,40 which
takes into account the intramolecular interactions only; the second

function is defined by the GROMOS potential energy and an
implicit solvation term based on the accessible surface area of each
atom and its solvation parameter [see eqs. (1) and (2)]. With the
GROMOS energy alone the performance of TN with respect to the
CPU time was found to be 1.2–2 times better than that of both
L-BFGS and CG; on the other hand, for the solvation model
L-BFGS outperforms TN by a factor of 1.5–2.5 and CG by a larger
factor, in accord with our preliminary studies.9 These results were
also analyzed in light of theories developed by Nash and No-
cedal31 and Axelsson and Lindskog,41,42 which rely on the eigen-
values and other quantities derived from the Hessian. Our study
has been the first where such an analysis has been applied to
optimization problems of biomacromolecules.

Recently, Morales and Nocedal43 developed a hybrid method
that consists of interlacing in a dynamic way the L-BFGS method
with the Hessian-free Newton (HFN). The limited-memory matrix
[see eqs. (8)–(10) below] plays a dual role of preconditioning the
inner conjugate gradient iteration in the HFN method as well as
providing the initial approximation of the inverse of the Hessian
matrix in the L-BFGS iteration. In this way information gathered
by each method improves the performance of the other without
increasing the computational cost. The hybrid method alleviates
the shortcomings of both L-BFGS and HFN. HFN normally re-
quires fewer iterations than L-BFGS to reach the solution, but the
effort invested in one iteration can be high and the curvature
information gathered in the process is lost after the iteration is
completed. L-BFGS, on the other hand, performs inexpensive
iterations, with poorer curvature information—a process that can
become slow on ill-conditioned problems. Indeed, Alekseev and
Navon44 found the hybrid method to be the best performer as
tested on cost functionals related to inverse problems in fluid
dynamics (see also ref. 45).

Because of the potential of the hybrid method, in this article we
study its performance as applied to the protein BPTI and a loop of
the protein ribonuclease (RNase) A modeled by the all-atom
AMBER force field46 (implemented in the program TINKER47).
This potential function is defined with a dielectric constant � � 1
and with a distance-dependent dielectric function � � 2r, where r
is the distance between two atoms. The electrostatic interactions
for � � 1 are strong, leading to a rugged potential energy surface
that becomes flatter for � � 2r due to the weaker electrostatic
interactions.48 Therefore, the nonlinearity in the potential function
is expected to decrease in going from � � 1 to � � 2r and it is of
interest to study the effect of this property on the performance of
various minimization procedures. As in our previous article,38 we
also test the solvation model discussed above. For comparison,
these systems are also studied by the L-BFGS algorithm of Liu and
Nocedal and the TN algorithm with automatic preconditioner of
Nash. The performance of the algorithms is compared with respect
to the CPU time and the number of energy/gradient calculations.

Theory and Methods

Protein Models and Energy Functions

Two systems are studied. One is the 58-residue protein BPTI that
consists of 878 atoms (including all the hydrogens), where the
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variables treated in the minimizations are the corresponding 878 �
3 � 2634 Cartesian coordinates; the initial 3D structure for energy
minimization is the crystal structure denoted 8pti in the Protein
Data Bank (PDB) to which hydrogen atoms have been added. The
second system is the 8-residue loop (64–71), Ala-Cys-Lys-Asn-
Gly-Gln-Thr-Asn (108 atoms) of RNase A (1860 atoms), where
the initial structure for energy minimization is 1rat.pdb with added
hydrogens. In this case only the loop is allowed to move during the
minimization while the coordinates of the rest of the protein (the
template) are held fixed at their X-ray values. More accurately,
only 614 atoms are included in the template, that is, any nonloop
atom with a distance smaller than 10 Å from at least one loop atom
(in the initial loop structure), together with all the other atoms
pertaining to the same residue. Thus, the number of Cartesian
variables in the loop–protein system is 108 � 3 � 324. The
calculations (including the addition of hydrogens) were performed
with the molecular mechanics/dynamic program TINKER,47

where the various optimizers have been implemented as subrou-
tines.

The potential energy EAMBER of these systems is defined by the
all-atom AMBER force field46 (provided by the program
TINKER) consisting of harmonic bond stretching potentials (to
maintain the connectivity of the polymer chain), harmonic bond
bending potentials, torsional potentials that depend on dihedral
angles, �, and nonbonded 6-12 Lennard–Jones and electrostatic
interactions (between charges and partial charges qi),

EAMBER � �
bonds

Kr�r � req�
2 � �

angles

K��� � �eq�
2

� �
dihedrals

Vn

2
�1 � cos�n� � ��� � �

i�j

�Aij

rij
12 �

Bij

rij
6 �

qiqj

�rij
� (1)

r and � are the actual values of the bond lengths and angles and req

and �eq are their equilibrium values, respectively. rij is the distance
between atoms i and j and Kr, K� ,Vn, n,�, Aij, and Bij are constants.
We study the dielectric constant � � 1 and a distance-dependent
dielectric function � � 2rij, which mimics the screening of the
electrostatic interactions by the surrounding water. For BPTI the
nonbonded interactions are calculated between every pair of atoms
without applying cutoffs. For the loop, on the other hand, only the
loop–loop and loop–template interactions are considered, while
the template–template interactions are ignored. For both molecules
the amino acid residues Arg, Lys, His, Asp, and Glu are charged.
It should be pointed out that distance-dependent dielectric func-
tions � � mrij with m � 1 have been commonly added to force
fields to partially model solvent effects (see ref. 48 and references
cited therein); therefore, it is of interest to test minimization
procedures applied to such force fields. Still, better implicit sol-
vation models are available that include in addition to � � mrij,
also the Born energy and the hydrophobic interaction.48 A simpli-
fied potential of this category, Etot, is studied here for the loop.

Thus, the total potential energy Etot is based on the force field
energy and a solvation term, Esolv,

Etot � EAMBER � Esolv � EAMBER � �
i

	iAi (2)

Ai is the (conformational-dependent) solvent-accessible surface
area (SASA) of atom i and 	i is the corresponding atomic solva-
tion parameter (ASP) derived by Das and Meirovitch for protein
loops.48 The SASA is defined as the surface traced by the center of
a spherical probe of 1.4 Å (mimicking a water molecule) as it is
rolled over the surface of the protein; This area is calculated
analytically with the program MSEED,49 which is based on a
modification of the analytic equations presented by Connoly50 and
Richmond.51 Use is made of the global Gauss–Bonet formula,
which describes the closed boundary of a regular region bounded
by simple, piece-wise regular curves. The program provides ana-
lytic derivatives of the SASA with respect to the Cartesian coor-
dinates, which are required by the present minimizers. One prob-
lem with Etot is the possible occurrence of discontinuities in the
gradient of Ai and the existence of saddle points. This might stop
the minimization process close to a local minimum, when the
contributions to the gradient from all the components are small. In
fact, gradient norms of only up to 10	3 kcal/(mol � Å) have been
found to be attainable with Etot.

Description of the Algorithms

In this work we test implementations of the L-BFGS Version
VA15 in the Harwell library,19 the TN method described by
Nash,25 and the hybrid method of Morales and Nocedal.43 A brief
description of the major components of each algorithm is given
below. While we do not apply the conjugate gradient algorithm in
this study, it is part of the L-BFGS method; therefore, for com-
pleteness we describe it as well.39

For a molecule of n atoms we use the following notations: fk �
f(xk) denotes the potential energy function E [eqs. (1) and (2)],
where xk is the 3n vector of the Cartesian coordinates at the kth
iteration. gk � g(xk) � 
fk is the gradient vector of size 3n, and Hk

� 
2fk is the 3n � 3n symmetrical Hessian matrix of the second
partial derivatives of f with respect to the coordinates. In all the
algorithms the new iterate is calculated from

xk�1 � xk � 
kpk (3)

where pk is the descent direction vector and 
k is the step length.
Iterations are terminated when

�gk� � 10	6max�1, �xk�� (4)

where � � � denotes the Euclidian norm. The necessary changes in
the programs were made to ensure that all three algorithms use the
same termination criterion. Also, the three methods use the same
line search, which is based on cubic interpolation and is subject to
the so-called strong Wolf conditions,52

f�xk� � f�xk � 
kpk� � 	�
kpk
Tgk

�g�xk � 
kpk�
Tpk�  ��gk

Tpk� (5)

where the superscript T denotes transpose, 0 � � � � � 1 and
their values are given below.
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Nonlinear Conjugate Gradient Algorithm

CG uses the analytic derivatives of f, defined by gk. A step along
the current negative gradient vector is taken in the first iteration;
successive directions are constructed so that they form a set of
mutually conjugate vectors with respect to the Hessian. At each
step, the new iterate is calculated from eq. (3) and the search
directions are expressed recursively as

pk � 	gk � �kpk	1 (6)

Calculation of �k with the algorithm incorporated in CONMIN is
described by Shanno.53 Automatic restarting is used to preserve a
linear convergence rate. For restart iterations, the search direction

k � 1. On the other hand, for nonrestart iteration


k�1 �

kgk

Tpk

gk�1
T pk	1

(7)

Limited-Memory BFGS Algorithm

The L-BFGS method is an adaptation of the BFGS method to large
problems, achieved by changing the Hessian update of the latter.
Thus, in BFGS54,55 eq. (3) is used with an approximation H̃k to the
inverse Hessian that is updated by

H̃k�1 � Vk
TH̃kVk � �ksksk

T (8)

where Vk � I 	 �kyksk
T, sk � xk�1 	 xk, yk � gk�1 	 gk, �k

� 1/(yk
Tsk), and I is the identity matrix. The search direction is

given by

pk�1 � 	H̃k�1gk�1 (9)

In L-BFGS, instead of forming the matrices H̃k explicitly (which
would require a large memory for a large problem) one only stores
the vectors sk and yk obtained in the last m iterations, which define
H̃k implicitly; a cyclical procedure is used to retain the latest
vectors and discard the oldest ones. Thus, after the first m itera-
tions, eq. (8) becomes

H̃k�1 � �Vk
T · · · Vk	m

T �H̃k�1
0 �Vk	m · · · Vk�

� �k	m�Vk
T · · · Vk	m�1

T �sk	msk	m
T

� �Vk	m	1
T · · · Vk�

� �k	m	1�Vk
T · · · Vk	m�2

T �sk	m�1sk	m�1
T

� �Vk	m�2
T · · · Vk�

···
� �ksksk

T (10)

with the initial guess H̃k�1
0 , which is the sparse matrix,

H̃k�1
0 �

yk
Tsk

yk
Tyk

I (11)

Many previous studies have shown that typically 3  m  7,
where m � 7 does not improve the performance of L-BFGS.

Truncated Newton Algorithm

In TN, a search direction is computed by finding an approximate
solution to the Newton equations,

Hkpk � 	gk (12)

The use of an approximate search direction is justified because an
exact solution of the Newton equation at a point far from the
minimum is unnecessary and computationally wasteful in the
framework of a basic descent method. Thus, for each outer itera-
tion [eq. (12)], there is an inner iteration loop making use of the
conjugate gradient method that computes this approximate direc-
tion, pk.

The conjugate gradient inner algorithm is preconditioned by a
scaled two-step limited-memory BFGS method with Powell’s re-
starting strategy used to reset the preconditioner periodically. A
detailed description of the preconditioner may be found in ref. 56.
The Hessian vector product Hkv for a given v required by the inner
conjugate gradient algorithm is obtained by a finite difference
approximation,

Hkv � �g�xk � hv� � g�xk��/h (13)

A major issue is how to adequately choose h;22 in this work we use
h � �(1 � �xk�), where � is the machine precision. The inner
algorithm is terminated using the quadratic truncation test, which
monitors a sufficient decrease of the quadratic model qk � pk

THkpk/2
� pk

Tgk:

�1 � qk
i	1/qk

i �  cq/i (14)

where i is the counter for the inner iteration and cq is a constant,
0 � cq  1, which will be specified later. The inner algorithm is
also terminated if an imposed upper limit on the number of inner
iterations, M, is reached or when a loss of positive definiteness is
detected in the Hessian (i.e., when vTHkv � 10	12). TN methods
can be extended to more general problems, which are not convex
in much the same way as Newton’s method (see ref. 57).

To understand the Hessian free Newton (HFN) method, let us
consider an inexact Newton-type iteration for solving the problem,
x� � x � 
p, where 
 is a step length and the search direction,
p, is an approximate minimizer of the quadratic model, q(p) �
f(x) � pTg(x) � (1/ 2)pTBp. Here, g denotes the gradient of the
objective function f and B is a symmetrical and positive definite
matrix. The approximate minimization of the quadratic q is per-
formed by the CG method. It is assumed that if negative curvature
is encountered the CG iteration terminates immediately without
exploring this negative curvature direction. A Hessian-free inexact
Newton method is a particular instance of this method in which B
is intended to be the Hessian, �2f (x), but is not computed explic-
itly. All products of the form B are either approximated by finite
differences, Bv � [g(x � hv) 	 g(x)]/h, where h is a small
parameter, or are computed by automatic differentiation tech-
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niques. There is no consensus on the best termination test for the
CG iteration, and various rules are used in practice.35,36,58

Hybrid Method

The hybrid method consists of interlacing in a dynamic way the
L-BFGS method with the HFN discussed above. The limited-
memory matrix plays a dual role of preconditioning the inner
conjugate gradient iteration in the HFN method as well as provid-
ing the initial approximation of the inverse of the Hessian matrix
in the L-BFGS iteration. In this way information gathered by each
method improves the performance of the other without increasing
the computational cost.

The hybrid method alleviates the shortcomings of both L-
BFGS and HFN. HFN requires fewer iterations than L-BFGS to
reach the solution, while the computational cost of each iteration is
high and the curvature information gathered in the process is lost
after the iteration has been completed. L-BFGS, on the other hand,
performs inexpensive iterations, with poorer curvature informa-
tion—a process that can become slow on ill-conditioned problems.

Algorithmically, implementation of the hybrid method includes
two limited-memory matrices: one that is used to precondition the
current CG (PCG) iteration and a second that is built in the course
of the PCG iteration and will define the preconditioner for the next
outer iteration. A detailed description of the preconditioning pro-
cess is given in refs. 45 and 60. In the hybrid method that will be
tested below, l steps of the L-BFGS method are alternated with t
steps of the HFN method, where the choice of l and t will be
discussed below. We illustrate this as

�l*�L-BFGS�O¡
H̃�m�

t*�HFN�PCG��O¡
H̃�m�

repeat�,

where H̃(m) is a limited-memory matrix that approximates the
inverse of the Hessian matrix [eq. (10)] and m denotes the number
of correction pairs stored. The L-BFGS cycle starts from the initial
unit or a weighted unit matrix, H̃(m) is updated using the most
recent m pairs, and the matrix obtained at the last L-BFGS cycle is
used to precondition the first of the t HFN iterations. In the
remaining t 	 1 iterations the limited-memory matrix H̃(m) is
updated using information generated by the inner preconditioned
CG (PCG) iteration and it is used to precondition the next HFN
iteration. At the end of the HFN steps the most current H̃(m)
matrix is used as the initial matrix in a new cycle of L-BFG steps.

The hybrid algorithm is described below:

Choose a starting point x, the memory parameter m, and an initial
choice of the length l of the L-BFGS cycle; set method 4’L-
BFGS’; first 4.true.

While a convergence test is not satisfied:
Repeat
compute p: call PCG (B, p, g, method, status, maxcg);
compute 
: call LNSRCH ( 
 );
compute x� � x � 
p;
store s � x� 	 x and y � g� 	 g;
call ADJUST ( l, t, 
, method, status, first, maxcg );
End repeat
End while.

The vectors s and y are used to update the limited memory
matrix. The parameter “method” can have the values “L-BFGS” or
“HFN” and “maxcg” determines the maximum number of CG
iterations allowed. This procedure returns a search direction p and
the value of “status,” which is used by procedure ADJUST to
modify the lengths l and t of the L-BFGS and HFN cycles. The
procedure LNSRCH is a standard backtracking line search routine
enforcing the Wolfe conditions [eq. (5)]. A more detailed descrip-
tion of procedures PCG and ADJUST is provided in Morales and
Nocedal.43

Initial Tuning of the Algorithms

In ref. 38, part of the parameters were tuned as applied to several
peptides and BPTI modeled by the GROMOS force field. The
optimal values of these parameters were found to be equal to the
default values, which are also used here because of the similarity
between the systems studied and the functional forms of the
AMBER and GROMOS force fields. For eq. (5) they are � � 10	4

for L-BFGS and TN and the hybrid method, � � 0.25 for L-BFGS,
and � � 0.9 for TN. For L-BFGS we checked several values of m
and provide in the tables the values that led to the shortest and
longest minimization times. Unlike ref. 38, where only m � 1
could be used for BPTI (with GROMOS), no problems were
encountered here to apply L-BFGS(m � 1) to BPTI; correspond-
ingly, using CHARMM, Xie and Schlick applied successfully
L-BFGS with m � 1 to BPTI and the larger protein lysozyme.35

For TN, the default value, cq � 0.5, is the best for the quadratic
truncation test [eq. (14)]. For this algorithm we also used M �
max[N/2,50] and h � � (1 � �xk�). All the calculations were
carried out in double precision on a workstation equipped with a
Digital Alpha 21264 (500-MHz) processor. The machine precision
is � � 10	14.

Results and Discussion

The initial 3D structures (the atomic Cartesian coordinates) for
energy minimization of BPTI (8pti) and RNase (irat) were taken
from the PDB. Hydrogen atoms were added to these structures
using the program TINKER,47 which was also used for calculating
the potential energy. The three optimization programs (minimiz-
ers)—L-BFGS, TN of Nash, and the hybrid method—were imple-
mented within TINKER as subroutines.

Two tables are presented for each model, for a dielectric
constant � � 1 (to be distinguished from �, the machine precision)
and a distance-dependent dielectric function 2rij. For the hybrid
method a relatively large number of minimizations (80–100) were
performed for each model based on different combinations of the
integer parameters maxcg, l, and t, where maxcg is the maximum
number of conjugate gradient iterations and l and t are the initial
number of iterations of L-BFGS and HFN, respectively. If l � 0
the code would run a pure HFN method, while for t � 0 the
standard L-BFGS method will be performed. All the calculations
with the hybrid method used an L-BFGS parameter m � 8. For
each model two sets of results (out of �100 minimizations) are
presented in the tables, those that required the shortest
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and longest CPU time, respectively; we also provide the number of
times the function and gradients were calculated. For L-BFGS
seven minimizations were carried out with 4  m  10, but only
two results are presented in tables for the m values that led to the
minimizations with shortest and longest CPU times; only one
result carried out with TN is displayed. The common tolerance [eq.
(4)] is 10	6.

In Table 1 results are presented for the loop using a dielectric
constant � � 1. The best result for the hybrid method (70-s CPU)
required 1.6 and 2 times less computer time than the shortest
minimizations obtained by L-BFGS(m � 8), (111-s CPU) and TN
(140-s CPU), respectively. The function/gradient numbers are pro-
portional to the corresponding CPU values. For this model the
longest minimization obtained for the hybrid method (163-s CPU)
is 2.3 times longer than the shortest one and on average the longest
minimizations in the table require �1.8 more computer time than
the shortest minimizations. The problem is that no clear correlation
between the parameters maxcg, l, and t and the efficiency of the
minimization has been observed. The suggested value of the pa-
rameter maxcg is min(N/2, 50), where N is the number of variables,
meaning that in our case maxcg �50. However, while the best
results indeed were obtained with maxcg � 40, 50, and 60, some
of the worst results were obtained with comparable values

maxcg � 30, 40, and 80 whereas some of the shortest minimiza-
tions were obtained with maxcg � 5–15. Still, from the entire
study we found that maxcg � 5 in most cases leads to relatively
long minimizations. Another general conclusion from the entire
study is that the results are better for l � t as is already evident
from Table 1 (note that the worst result is obtained for l � 1 and
t � 10); still, satisfying this condition does not guarantee an
efficient minimization, where l � 200 and t � 0 have led to the
best result, while long minimizations were obtained with the
corresponding pairs (150, 10) and (100, 20) (see Table 1).

In Table 2 results are displayed for the same loop, modeled
with the AMBER force field with a distance-dependent dielectric
function � � 2rij rather than � � 1. The weakened electrostatic
interactions for � � 2rij are expected to lead to a flatter energy
surface and hence a decrease in the nonlinearity of the energy
function, making the minimization procedure easier. Indeed, the
shortest minimizations for the hybrid and L-BFGS methods in
Table 2 required slightly less computer time than the correspond-
ing calculations in Table 1. Also, the ratio CPU(L-BFGS)/CPU-
(hybrid) calculated for the shortest minimizations decreased from
1.6 (� � 1) to 1.54 (� � 2rij), while the corresponding ratio for TN
decreased more significantly, from 2 (Table 1) to 1.42 (Table 2)
due to a strong decrease in the TN minimization time, from 140-s
CPU (Table 1) to 98-s CPU (Table 2). Correspondingly, the
difference between the average CPU times required for the shortest
and longest minimizations of the hybrid and L-BFGS methods is
smaller in Table 2 than in Table 1. In Table 2, however, the values

Table 2. Minimization Results for the RNase A Loop Using
a Distance-Dependent Dielectric Function, � � 2r.

maxcg or m l t CPU (s) No. functions/gradients

Hybrid method

Shortest minimizations

50 30 20 69 844
80 100 10 70 856
30 100 10 71 874
80 150 10 72 890
70 150 10 72 887
70 100 20 72 892
70 30 20 73 902
40 30 20 73 898
40 50 5 73 898

Longest minimizations

7 30 10 109 1345
5 1 10 106 1302
10 30 20 105 1296
10 50 30 105 1294
15 5 10 105 1294

L-BFGS
6 106 1301
8 114 1405

TN-Nash 98 1198

Initial energy E � 48.2 kcal/mol; final minimized energy E �
	61.75175. The parameters are defined in Table 1. �xk� � 646.6 Å; �gk�
� 8.894 � 10	3 kcal/(mol Å).

Table 1. Minimization Results for the RNase Loop Using
Dielectric Constant � � 1.

maxcg or m l t CPU (s) No. functions/gradients

Hybrid method

Shortest minimizations (CPU)

50 200 10 70 836
40 200 10 71 855
60 200 10 74 886
5 200 10 75 897
7 30 20 76 922
7 200 10 78 941
15 200 10 79 947

Longest minimizations (CPU)

5 1 10 163 1955
5 50 30 123 1489
30 30 10 136 1637
40 150 10 122 1465
80 100 20 130 1566

L-BFGS
8 111 1336
5 133 1593

TN-Nash 140 1672

Initial energy E � 	144.3 kcal/mol; final minimized energy E �
	286.43377. maxcg is the maximum number of CG iterations allowed.
t and l are the numbers of HFN and L-BFGS iterations, respectively. A
large number of minimizations (�100) were performed for different sets of
parameters maxcg, t, and l. The fastest and slowest minimizations with
respect to CPU time appear in shortest minimizations and longest minimi-
zations, respectively. For L-BFGS the fastest and slowest minimizations
are provided, where m is the number of iterations considered in the
L-BFGS procedure. At the minimum, �xk� � 654.3 Å; �gk� � 8.946 �
10	3 kcal/(mol Å).
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of maxcg are significantly larger for the shortest minimizations
(40–80) than for the longest ones (7–15). Again, while l � t
appears to be a necessary condition for getting the shortest mini-
mizations, it is not a sufficient condition as l � t also occurs for the
longest minimizations.

As in Table 1, the CPU ratios for the hybrid method minimi-
zations based on different parameters are close to the correspond-
ing ratios obtained from the numbers of the function/gradient
calculated. In Figures 1a and 1b the energy, EAMBER (eq. (1)), is
plotted against the number of iterations k for � � 1 and � � 2rij,
respectively, whereas in Figures 2a and 2b the corresponding
results are presented for log(�gk�/�g0�. In both figures the results are
displayed for the shortest and longest minimizations. It is interest-
ing to note that while the CPU times and the total number of

function/gradient calculations of the shortest minimizations for
� � 2rij and � � 1 are almost the same the number of iterations is
significantly different, 105 and 440, respectively, which is clearly
demonstrated in the figures. On the other hand, the corresponding
numbers of iterations for the longest minimizations are compara-
ble, 560 and 511 although �50% more function/gradient calcula-
tions are carried out for � � 2rij.

The results in Table 3 are for BPTI modeled by AMBER (� �
2rij). For this molecule the effect of the muted electrostatic inter-
actions is stronger than for the loop. Thus, while the hybrid method
still provides the shortest minimizations, the ratios CPU(LBFGS,
m � 5)/CPU(hybrid-shortest) � 1.17 and CPU(TN)/CPU(hybrid-
shortest) � 1.19 are significantly smaller than the corresponding
ratios obtained for the loop in Tables 1 and 2. Correspondingly,

Figure 1. Plots of the AMBER force field energy, EAMBER (eq. (1)), versus the number of
iterations k obtained during the shortest and longest minimizations of the loop [(a) and (b), � � 1
and � � 2rij, respectively] and BPTI [(c) and (d), � � 2rij, and � � 1, respectively].
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relatively low values, 1.59 and 1.2, are obtained for the ratio
CPU(hybrid-longest)/CPU(hybrid-shortest) and the same ratio
based on the average CPU times of the sets of shortest and longest
minimizations, respectively. The ratios of the function/gradient
evaluations are similar to the corresponding CPU ratios, and the
behavior of the parameters maxcg, l, and t is similar to that
observed in Tables 1 and 2. Figures 1c and 2c (for � � 2rij) show
that both EAMBER and log(�gk�/�g0� reach the minimum in a
smaller number of iterations for the shortest minimization than for
the longest one, in accord with the result for CPU(hybrid-longest)/
CPU(hybrid-shortest) discussed above.

In Table 4 we present results for BPTI obtained with a dielec-
tric constant � � 1. While most of the minimizations have found
the same energy minimum (	1778.58 kcal/mol), in some cases

lower minima were reached (the lowest is 	1917.31 kcal/mol) and
in two cases higher minima were obtained. In particular, the TN
minimum is 	1808.23 and therefore for comparison we include in
the “longest minimizations” section of the table results for a hybrid
method minimization that reached—1813.84 kcal/mol mini-
mum—the closest to the TN minimum. Again, the shortest mini-
mizations with respect to CPU time obtained by the hybrid method
are shorter than those obtained by L-BFGS (a ratio of 941/709 �
1.33 for the smallest CPU results); however, a most significant
advantage of the hybrid method is with respect to TN, where the
large CPU ratio, 7673/1524 � 5.03, is obtained for TN versus the
hybrid method minimization that led to 	1813.84 kcal/mol. In
other words, the advantage of the hybrid method over L-BFGS and
TN is more pronounced for � � 1 than for � � 2rij.

Figure 2. Plots of log(�gk �/�g0 �) versus the number of iterations k obtained during the shortest
and longest minimizations of the loop [(a) and (b), � � 1 and � � 2rij, respectively] and BPTI
[(c) and (d), � � 2rij, and � � 1, respectively].
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The average CPU ratio of the longest and shortest minimiza-
tions is around 1.4, where the ratio between the worst and best
results is 1745/709 � 2.46; similar values are obtained for the
corresponding ratios based on the numbers of function/gradient
evaluations. As in Tables 1 and 2, for the loop all these ratios are
larger than their counterparts obtained from Table 3 using � � 2rij,
which is also in accord with the plots of Figures 1d and 2d for
EAMBER and log(�gk�/�g0�), where the difference in the total num-
ber of iterations of the shortest and longest minimizations is much
larger than the corresponding difference in Figures 1c and 2c. It
should be pointed out that the values of maxcg for the shortest
minimizations are within the range 25–40 while those for the
longest minimizations are significantly smaller, ranging from
4–10. The condition l � t appears to be important for obtaining
reasonable efficiency, where l � 1and t � 10 have led to the
longest minimization (1642 s), which is significantly larger than
the other results for the hybrid method.

It should be pointed out that the quality of a minimized struc-
ture can only be determined by comparing it to the experimental
crystal structure. These structures are in general slightly different
because application of the force field to the crystal structure and
adding the hydrogens may result in atomic overlaps, which are
removed during the energy minimization. Larger deviations are
expected for � � 1 than � � 2rij because of the stronger electro-
static interactions caused by � � 1. Indeed, we found that the root
mean square deviations between the coordinates of the heavy atoms of
the initial and final structures are 1.8 and 0.6 Å for the loop and 1.6
and 1.3 Å for BPTI for � � 1 and � � 2rij, respectively.

We also carried out minimizations for the loop described by the
potential energy Etot [eq. (2)], which includes the solvation energy
calculated by SASA and the best-fit set of ASPs defined in ref. 48,
using a relatively large tolerance of 10	3 [see eq. (4)]. The energy
was decreased from 	368.848 to 	480.167 kcal/mol, but in this
case the three methods were found to be approximately equally
efficient (�42-s CPU) and therefore the results are not provided.

In summary, for the two systems studied the hybrid method has
been found to be more efficient than both L-BFGS and TN, where
the improvement in computer time is by a factor of 1.3–2, and only
for BPTI (� � 1) the minimization with TN required �5 times
more computer time than the best minimization performed with the
hybrid method. In particular, the performance of TN(Nash) de-
creases as the electrostatic interactions increase in going from � �
2rij to � � 1, probably due to the increase in the ruggedness of the
potential energy surface, which possibly also contains many saddle
points. To check whether this inferior performance is a result of a
poor preconditioner, or reflects a more general difficulty of TN
methods, we carried out several minimizations for the loop with
� � 1 using the hybrid method with l � 0, that is, applying pure
HFN, which is expected to have a more advanced preconditioner

Table 4. Minimization Results for BPTI with a Dielectric
Constant, � � 1.

maxcg or m l t CPU (s) No. functions/gradients

Hybrid method

Shortest minimizations

25 30 10 709 2835
30 30 20 743 2970
40 30 30 750 2996
30 100 10 760 3041
25 30 30 763 3049
30 30 13 755 3019
25 25 15 768 3069
25 35 10 780 3124
25 30 20 780 3120

Longest minimizations

4 1 10 1642 6573
4 10 1 1108 4436
5 10 1 1031 4127
6 10 1 1031 4127
8 10 1 1051 4201
10 10 5 992 3974
7 5 10 1524*

L-BFGS
9 941 3761
7 960 3839

TN-Nash 7637* 29709

Initial energy E � 	831.2109 kcal/mol; final minimized energy E �
	1778.58093. For explanations, see Table 1. The TN minimum,
	1808.23 kcal/mol, is lower than the minimum obtained in most of the
other minimizations; therefore, for comparison, we include in the longest
minimizations section results for a hybrid method minimization that
reached a close minimum, 	1813.84 kcal/mol. Above these results appears
an asterisk. For the minimum 	1778.58093, �xk� � 860.5 Å; �gk� �
9.522 � 10	3 (kcal/mol Å).

Table 3. Minimization Results for BPTI Using a Distance-Dependent
Dielectric Function, � � 2r.

maxcg or m l t CPU (s) No. functions/gradients

Hybrid method

Shortest minimizations

50 200 10 1157 4768
80 200 10 1163 4798
30 200 10 1163 4780
30 150 10 1164 4804
70 200 10 1178 4859
40 200 10 1181 4872
70 150 10 1191 4913

Longest minimizations

5 1 10 1841 7613
70 30 20 1428 5909
80 50 20 1381 5700
80 100 20 1355 5599
60 30 20 1353 5582
60 50 30 1321 5448
60 100 50 1299 5371

L-BFGS
5 1358 5619
6 1485 6144

TN-Nash 1375 5703

Initial energy E � 207.43 kcal/mol; final minimized energy E �
	358.03247. For explanations, see Table 1. �xk� � 856.1 Å; �gk� �
8.152 � 10	3 kcal/(mol Å).
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than that of TN(Nash).45,59 However, the shortest minimization of
137 s (maxcg � 50) is close to the 140 s obtained with TN(Nash)
whereas using maxcg � 5, 20, and 70 required 142, 156, and 161 s,
respectively. To further investigate this problem it would be of
interest to apply a TN method such as that provided by TNPACK
where the preconditioning matrix can be tailored to the specific
problem studied.26,27,33,35,36

The three methods have shown comparable efficiency for Etot,
which is based on surface area calculations. However, determina-
tion of the optimal values of the parameters maxcg, l, and, t is not
straightforward: It appears to be problem dependent, hence requir-
ing experimentation prior to the “production” minimizations. The
present conclusions seem to be general and not tailored to the
functions studied; thus, Alekseev and Navon44 applied the hybrid
method to a different set of functions, concluding that the optimal
values of maxcg, l, and, t are system dependent.
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