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Abstract. Elastic network models (ENMs), and in particular the Gaus-
sian Network Model (GNM), have been widely used in recent years to
gain insights into the machinery of proteins. The extension of ENMs
to supramolecular assemblies/complexes presents computational chal-
lenges, however, due to the difficulty of retaining atomic details in mode
decomposition of large systems dynamics. Here, we present a novel ap-
proach to address this problem. Based on a Markovian description of
communication/interaction stochastics, we map the full-atom GNM rep-
resentation into a hierarchy of lower resolution networks, perform the
analysis in the reduced space(s) and reconstruct the detailed models dy-
namics with minimal loss of data. The approach (hGNM) applied to
chaperonin GroEL-GroES demonstrates that the shape and frequency
dispersion of the dominant 25 modes of motion predicted by a full-residue
(8015 nodes) GNM analysis are almost identically reproduced by reduc-
ing the complex into a network of 35 soft nodes.

1 Introduction

With advances in sequence and structure genomics, an emerging view is that
to understand and control the mechanisms of biomolecular function, knowledge
of sequence and structure is insufficient. Additional knowledge in the form of
dynamics is needed. In fact, proteins do not function as static entities or in
isolation; they are engaged in functional motions, and interactions, both within
and between molecules. The resulting motions can range from single amino acid
side chain reorientations (local) to concerted domain-domain motions (global).
The motions on a local scale can be explored to a good approximation by con-
ventional molecular dynamics (MD) simulations, but the motions at a global
scale are usually beyond the range of such simulations. Elastic network mod-
els (ENM), based on polymer mechanics, succeed in providing access to global
motions [1–3].

A prime example of an EN is the Gaussian Network Model (GNM) [4, 5]. In
graph-theoretic terms, each protein is modeled by an undirected graph G, given
by G = (V , E), with residues V = {vi|i = 1, . . . , n} defining the nodes of the
network, and edges E = {eij} representing interactions between residues vi and
vj . The set of all pairwise interactions is described by a non-negative, symmetric
affinity matrix A = {aij}, with elements aij = aji. GNM chooses a simple
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interaction model, which is to set the affinity aij = aji = 1, for a pair of residues
vi and vj whose Cα atoms are within a cut-off distance of rc. The interactions
represent both bonded and non-bonded contacts in the native configuration of
the protein. The cutoff distance represents the radius of the first coordination
shell around residues observed in Protein Data Bank (PDB) [6] structures and
is set to be 7Å [7, 8].

The motions accessible under native state conditions are obtained from the
Kirchhoff matrix Γ , defined in terms of the affinity and degree matrices as
Γ = D − A. Here D is a diagonal matrix: D = diag(d1, . . . , dn) and dj rep-
resents the degree of a vertex vj : dj =

∑n
i=1 aij =

∑n
j=1 aji. Γ is referred to

as the combinatorial Laplacian in graph theory [9]. The Kirchhoff matrix multi-
plied by a force constant γ that is uniform over all springs defines the stiffness
matrix of an equivalent mass-spring system. The eigenvalue decomposition of Γ
yields the shape and frequency dispersion of equilibrium fluctuations. In most
applications it is of interest to extract the contribution of the most cooperative
modes, i.e. the low frequency modes that have been shown in several systems
to be involved in functional mechanisms [1, 2]. Also, of interest is the inverse
of Γ , which specifies the covariance matrix for the Boltzmann distribution over
equilibrium fluctuations.

GNM is a linear model, and as such it cannot describe the transition between
configurations separated by an energy barrier (or any other non-linear effect),
so it only applies to fluctuations in the neighborhood of a single energy mini-
mum. The energy well is approximated by a harmonic potential, which limits
the magnitude of the predicted motion. The topology of inter-residue contacts
in the equilibrium structure is captured by the Kirchhoff matrix Γ . Also, there
is no information on the ’directions’ of motions in different vibrational modes,
but on their sizes only. The fluctuations are assumed to be isotropic and Gaus-
sian, but for anisotropic extension of GNM called ANM see [10, 11] or equivalent
EN-based normal mode analyses (NMA) [12, 13]. Despite this simplicity, many
studies now demonstrate the utility of GNM and other EN models in deducing
the machinery and conformational dynamics of large structures and assemblies
(for a recent review see [2]).

The application and extension of residue-based ENMs to more complex pro-
cesses, or larger systems, is computationally expensive, both in terms of memory
and time, as the eigen decomposition scales on the order of O(n3), where n is the
number of nodes in the graph. Given that the Kirchhoff matrix is sparse, there
are a plethora of efficient sparse eigensolvers that one can use [14–17], including
eigensolvers designed specifically for decomposing graph Laplacians [18].

Another way to reduce complexity is to adopt coarser-grained models. For
example, in the hierarchical coarse-graining (HCG) approach, sequences of m
consecutive amino acids are condensed into unified nodes - which reduces the
computing time and memory by factors of m3 and m2, respectively [19]; or a
mixed coarse-graining has been proposed in which the substructures of interest
are modeled at single-residue-per-node level and the surrounding structural units
at a lower resolution of m-residues-per node [20]; another common representation
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of the structure is to adopt rigidly translating and rotating blocks (RTB) [21,
22], or the so-called block normal mode analysis (BNM) [23].

While these methods have been useful in tackling larger systems, the choice
and implementation of optimal model parameters to retain physically significant
interactions at the residue-, or even atomic level, has been a challenge. The level
of HCG has been arbitrarily chosen in the former group of studies, requiring ad-
hoc readjustments to spring constants or cutoff distances of interaction. In the
case of RTB or BNM approaches, all atomic, or residue level information is lost,
and substructures that may contain internal degrees of freedom – some of which
being functional – are assumed to move as a rigid block. Overall, information is
lost on local interactions as structures are coarse-grained. Clearly, the challenge
is to map a high resolution model to a low resolution, with a minimal loss of
information. In this paper, we present a novel approach to address this problem.

Our approach is to model structures as networks of interacting residues and
study the Markov propagation of “information” across the network. We rely on
the premise that, the components (residues) of a protein machinery (network)
communicate with each other and operate in a coordinated manner to perform
their function successfully. Using the Markov chain perspective, we map the full
atom network representation into a hierarchy of intermediate ENMs, while re-
taining the Markovian stochastic charactersitcs, i.e. transition probabilities and
stationary distribution, of the original network. The communication properties
at different levels of the hierarchy are intrinsically defined by the network topol-
ogy. This new representation has several features, including: soft clustering of
the protein structure into stochastically coherent regions thus providing a useful
assessment of elements serving as hubs and/or transmitters in propagating infor-
mation/interaction; automatic computation of the contact matrices for ENMs
at each level of the hierarchy to facilitate computation of both Gaussian and
anisotropic fluctuation dynamics; and a fast eigensolver for NMA. We illustrate
the utility of the hierarchical decomposition by presenting its application to the
bacterial chaperonin GroEL–GroES.

2 A Markov Model for Network Communication

We model each protein as a weighted, undirected graph G given by G = (V , E),
with residues V = {vi|i = 1, . . . , n} defining the nodes of the network, and edges
E = {eij} representing interactions between residues vi and vj . The set of all
pairwise interactions is described by a non-negative, symmetric affinity matrix
A = {aij}, with elements aij = aji and where aij is the total number of atom–
atom contacts made within a cutoff distance of rc = 4.5Å between residues vi and
vj . The self-contact aii is similarly defined, but all bonded pairs are excluded.
This representation takes into account the difference in the size of amino acids,
and captures to a first approximation the strong (weak) interactions expected
to arise between residue pairs with large (small) number of atom-atom contacts.
The degree of a vertex vj is defined as dj =

∑n
i=1 aij =

∑n
j=1 aji, which are

organized in a diagonal matrix of the form D = diag(d1, . . . , dn).
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A discrete-time, discrete-state Markov process of network communication is
defined by setting the communication (or signalling) probability mij from residue
vj to residue vi in one time-step to be proportional to the affinity between nodes,
ai,j . In matrix notation, this conditional probability matrix M = {mij}, also
called the Markov transition matrix, given by

M = AD−1. (1)

defines the stochastics of a random walk on the protein graph G. Note, mij =
d −1

j aij where dj gives a measure of local packing density near residue vj and
serves as a normalizing factor to ensure

∑n
i=1 mij = 1. Alternatively, mij can

be viewed as the conditional probability of interacting with residue vi, that is
transmitting information to residue vi, given that the signal (or perturbation) is
initially positioned, or originates from, vj . Suppose this initial probability is p0

j .
Then, the probability of reaching residue vi using link eij is mijp

0
j . In matrix no-

tation, the probability of ending up on any of the residues v = [v1, v2, · · · , vn] af-
ter one time step is given by the distribution p1 = Mp0, where pk =

[
pk
1 , . . . , pk

n

]
.

Clearly this process can be iterated, so that after β steps we have

pβ = Mβp0. (2)

Assume the graph is connected, i.e. there is a path connecting every pair of
residues in the graph. Then, as β → ∞ the Markov chain pβ approaches a unique
stationary distribution π, the elements of which are given by: πi = di/

∑n
k=1 dk.

While the evolution of the random walk is a function of the starting distribution,
the stationary distribution is invariant to the precise details of how the random
walk is initiated.

The main goal in undertaking random walks is to reveal the communication
patterns inherent to the network because of its architecture. However, a naive
random walk on a large protein, as will be presented below for the GroEL-
GroES complex, is computationally challenging. We address this problem by
building a hierarchy of intermediate resolution network models, performing the
analysis in the reduced space and mapping the results back to the high resolution
representation as illustrated in Fig. 1.

3 Network Hierarchy to Reduce Communication
Complexity

The objective in designing a network hierarchy is to map the Markov process
operating at the highest resolution onto successively lower resolution network
models, while maintaining its stochastic characteristics [24]. In particular, using
the stationary distribution π and the Markov transition matrix M , we build
a coarse-scale Markov propagation matrix M̃ (size: m × m, where m � n)
and its stationary distribution δ. The random walk initiated on the coarse-
scale network G̃(m), and reaching distribution δ, is equivalent to the random
walk on the full resolution network G(n) with stationary distribution π. To
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Fig. 1. Hierarchical Network Decomposition Overview: step (i) map the structure (a)
to its optimal reduced level representation (illustrated here for retinol-binding protein
mapped from full atomic scale to intermediate-chain representation). This step may
involve several intermediate levels of resolution (b) (e.g. see Fig. 2); step (ii) perform
structural analysis (e.g. GNM) at a coarse-grained scale (c); and step (iii) reconstruct
the detailed structure-dynamics (d). The communication/coupling of residues at a
given level are assumed to obey a Markov process controlled by atom-atom contact
topology. The steps (i) and (iii) are achieved by two operators, R for model reduction,
and K for model reconstruction. R and K ensure that similar stochastic characteristics
(transition probabilities and stationary distributions) are retained between successive
levels of the hierarchy.

build a hierarchy of intermediate resolution networks we devise two sets of new
operators at each level of the hierarchy: R for model reduction, and K for model
expansion/reconstruction.

3.1 Deriving Stationary Distribution in the Reduced Model

We begin by expressing the stationary distribution π = [π1, π2, · · · , πn] as a
probabilistic mixture of latent distributions,

π = Kδ, (3)

where δ = [δ1, δ2, · · · , δm] is an unknown stationary distribution in a reduced
(m−dimensional) representation of the structure; K = {Kij} is an n × m non-
negative kernel matrix with elements Kij and columns Kj being latent proba-
bility distributions that each sum to 1, and m � n. The kernel matrix acts as
an expansion operator, mapping the low-dimensional distribution δ to a high-
dimensional distribution π.

We derive a maximum likelihood approximation for δ using an expectation-
maximization (EM) type algorithm [25]. To this aim we minimize the Kullback-
Liebler distance measure [26, 27] between the two probability distributions π and
Kδ, subject to the constraint that

∑m
j=1 δj = 1 and ensured by the Lagrange

multiplier λ in the equation below:

E = −∑n
i=1 πi ln

∑m
j=1 Kijδj + λ

(∑m
j=1 δj − 1

)
. (4)
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Setting the derivative of E with respect to δj to be zero we obtain

n∑
i=1

πiKijδj∑m
k=1 Kikδk

= λδj . (5)

The contribution made by kernel j to a node i (or its stationary probability πi)
is given by Kij (or the product Kijδj), and hence we can define an ownership
of node i in the high resolution representation by a node j in the low resolution
representation as

Rij = Kijδj∑
m

k=1
Kikδk

. (6)

Rij is also referred to as the responsibility of node j in the low resolution rep-
resentation, for node i in the high resolution. We note that the mapping be-
tween the two resolutions is not deterministic, but probabilistic in the sense that∑m

j=1 Rij = 1.
Using this relation, and the equalities

∑m
j=1 δj = 1 and

∑n
i=1 πi = 1, sum-

ming over j in Eq. 5 gives λ = 1. This further leads to the stationary distribution
δ at the coarse scale

δj =
∑n

i=1 πiRij . (7)

The matrix R therefore maps the high dimensional distribution π to its low-
dimensional counterpart δ and hence the name reduction operator. Following
Bayes theorem, Kij can be related to the updated δ values as

Kij = Rijπi

δj
. (8)

In summary, the operators K and R and stationary distribution δ are com-
puted using the following EM type procedure: (1) select an initial estimate for
K and δ (see § 3.2); (2) E-step: compute ownership maps R using Eq. 6; (3)
M-step: estimate δ and update K using Eqs. 7 and 8 respectively; and finally,
(4) repeat E- and M- steps until convergence.

3.2 Kernel Selection Details

As an initial estimate for δ, a uniform distribution is adopted. The kernel matrix
K is conveniently constructed by diffusing M to a small number of iterations
β to give Mβ and selecting a small number of columns. In picking the columns
of Mβ , a greedy decision is made. In particular, column i in Mβ corresponds
to information diffusion from residue vi. The first kernel Ki that is picked cor-
responds to the residue vi with the highest stationary probability πi. Following
the selection of Ki, all other residues j (and the corresponding columns Kj in
Mβ) that fall within the half-height of the peak value of the probability distri-
bution in Ki are eliminated from further consideration. This approach generates
kernels that are spatially disjoint. The selection of kernels continues until every
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residue in the protein is within a half-height of the peak value of at least one
kernel. While other kernel selection procedures are conceivable, we chose the
greedy method for computational speed. In practice, we observed the EM algo-
rithm generates results of biological interest that are insensitive to the initial
estimates of K and δ.

3.3 Transition and Affinity Matrices in the Reduced Model

The Markov chain propagation at the reduced representation obeys the equation
qk+1 = M̃qk, where qk is the coarse scale m-dimensional probability distribu-
tion after k steps of the random walk. We expand qk into the fine scale using
pk = Kqk, and reduce pk back to the coarse scale by using the ownership value
Ri,j as in q k+1

j =
∑n

i=1 p k
i Ri,j . Substituting Eq. 6 for ownerships, followed by

the expression for pk, in the equation for q k+1
j , we obtain

M̃ = diag( δ )KT diag (Kδ )−1
K. (9)

Using the definition of M̃ , and the corresponding stationary distribution δ, we
generate a symmetric affinity matrix Ã that describes the node-node interaction
strength in the low resolution network

Ã = M̃diag(δ). (10)

To summarize, we use the stationary distribution π and Markov transition ma-
trix M at the fine-scale to derive the operator K and associated reduced sta-
tionary distribution δ, using the EM algorithm described in the previous section.
K and δ are then used in Eq. 9 and 10 to derive the respective transition M̃
and affinity Ã matrices in the coarse-grained representation. Clearly, this proce-
dure can be repeated recursively to build a hierarchy of lower resolution network
models.

4 Hierarchical Decomposition of the Chaperonin
GroEL-GroES

We examine the structure and dynamics of the bacterial chaperonin complex
GroEL-GroES-(ADP)7 [28], from the perspective of a Markov propagation of
information/interactions. GroEL is a cylindrical structure, 150Å long and 140Å
wide, consisting of 14 identical chains organized in two back-to-back stacked
rings (cis and trans) of seven subunits each. The GroES co-chaperonin, also
heptameric, binds to the apical domain of GroEL and closes off one end of the
cylinder. During the allosteric cycle that mediates protein folding, the cis and
trans rings alternate between open (upon binding of ATP and GroES) and closed
(unliganded) forms, providing access to, or release from, the central cylindrical
cavity, where the folding of an encapsulated (partially folded or misfolded) pro-
tein/peptide is assisted.
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First, the inter-residue affinity matrix A based on all atom-atom contacts is
constructed (Fig. 2a), from which the fine-scale Markov transition matrix M
is derived using Eq. 1. The kernel selection algorithm applied to Mβ (β = 4)
yields 1316 (reduced level 1) kernels. Using these kernels as an initialization,
a recursive application of the EM procedure derives stationary distributions
δ (Eq. 7), updated expansion matrices K (Eq. 8), reduced level probability
transition matrices M̃ (Eq. 9) and the corresponding residue interaction matrices
Ã (Eq. 10). The respective dimensions of Ã turn out to be 483 (reduced level
2), 133 (reduced level 3), 35 (reduced level 4, Fig. 2c) and 21 (reduced level
5, Fig. 2d). We note that the individual subunits of the GroEL/GroES are
distinguished by their strong intra-subunit interactions, and a number of inter-
subunit contacts are maintained at all levels, which presumably establish the
communication across the protein at all levels. The dimension m of the reduced
model is automatically defined during the kernel selection at each level of the
hierarchy. The method thus avoids the arbitrary choices of sampling density and
interaction cutoff distances at different hierarchical levels.
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Fig. 2. Affinity matrix hierarchy for the protein GroEL/GroES (PDB: 1AON). The
respective sizes of the reduced models, and the associated affinity matrices, across the
hierarchy are n = 8015 (fine-scale, panel a) and m = 1316 (coarse-scale 1, panel b),
483 (coarse-scale 2), 133 (coarse-scale 3), 35 (coarse-scale 4, panel c) and 21 (coarse-
scale 5, panel d). The affinity matrices are real-valued but are shown here as dot plots
(panels a-b), to highlight the similarity in the matrix structure across the hierarchy.
The affinity matrices for the two lowest resolution models (panels c-d) are shown as
images, where the affinity value is inversely proportional to the brightness of a pixel.

In contrast to the deterministic assignment of one-node-per-residue in the
original ENM, the Markov-chain-based representation adopts a stochastic de-
scription in the sense that each node probabilistically ’owns’, or ’is responsible
for’ a subset of residues. To see this, consider the ownership matrix R(l,l+1) =
{R(l,l+1)

ij } that relates information between two adjacent levels l and l +1 of the
hierarchy. Likewise, the matrix R(0,L) =

∏L−1
l=0 R(l,l+1) ensures the passage from

the original high resolution representation 0 to the top level L of the hierarchy.
In particular, the ijth element R

(0,L)
ij describes the probabilistic participation of

residue vi (at level 0) in the cluster j (at level L), and
∑

j R
(0,L)
ij = 1. Hence,
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Fig. 3. Four different soft clusters located on GroEL.

the nodes at level L perform a soft partitioning of the structure. This type of
soft distribution of residues among the m nodes, or their partial/probabilistic
participation in neighboring clusters, establishes the communication between the
clusters, and is one of the key outcomes of the present analysis. Of interest is
to examine the ownership of clusters at a reduced representation. We select the
coarse-scale 4, for example, which maps the structure into a graph of 35 clus-
ters (Fig. 2c). Fig. 3 demonstrates the ownership of the individual clusters at
this level. Essentially there are five sets of seven clusters each, centered near the
apical and equatorial domains of the cis and trans rings, and at the individual
GroES chains. The intermediate domains are being shared between the clusters
at the apical and equatorial domains. As such, they play a key role in estab-
lishing intra-subunit communication. The color-coded ribbon diagrams in Fig. 3
display the loci of representative clusters from each of these four distinct types
(excluding the GroES clusters). The color code from red-to-blue refers to the
higher-to-lower involvement (or responsibility) of the individual residues in the
indicated clusters. Evidently, the regions colored red serve as hubs for broad-
casting the information within clusters, and those colored blue play the key role
of establishing the communication, or transferring information between clusters.
Detailed examination of the ownership of these clusters reveal several interesting
features, correlating with the experiments and summarized in §6.

Next, we benchmark the utility and robustness of the presently introduced
methodology in so far as the equilibrium dynamics of the examined structure is
concerned. Mainly, we compare the collective modes of motion predicted for the
GroEL-GroES complex using a full-residue (8015 nodes) ENM [29], with those
captured by the hierarchy of reduced models. The newly introduced represen-
tation hierarchy will be shown below to successfully map structure-dynamics
information between successive levels with minimal loss in accuracy1.

1 The ownership matrix can also be used to propagate the location information of
the residues from one level of the hierarchy to another. This in turns help perform
anisotropic fluctuation modeling, but for lack of space this procedure will not be
elaborated any further.
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5 Hierarchical Gaussian Network Model (hGNM)

Here we present a methodology for generating GNM modes at different lev-
els of coarse-graining the information on contact topology inherent in G, and
reconstructing the detailed mode behavior by projecting the eigenvectors and
eigenvalues generated at low levels of resolution back to their fine scale counter-
parts using the Markov chain propagation formalism, a method shortly referred
to as hierarchical GNM (hGNM).

For hGNM, assume that the dimensions of the Kirchhoff matrices at the
coarse, intermediate and fine scales are e, m and n respectively, where e ≤ m �
n. The affinity and Kirchhoff matrices at the coarsest level are not likely to be
sparse, however a full eigen decomposition of the coarsest Kirchhoff matrix (size:
e × e) will be computationally the least expensive step.

To reconstruct the eigen information at the fine-scale, assume we have ac-
cess to the leading eigenvectors Û (size: m × e) for Γ̂ (size: m × m). Using this
we generate the leading eigenvectors Ũ (size: n × e), and the leading eigenval-
ues Λ̃ = [λ1, λ2 · · ·λe] (size: e × 1) of the fine-scale Kirchhoff matrix Γ (size:
n × n). Let {U , Λ} denote the eigenvectors and eigenvalues obtained from a
direct decomposition of Γ . There are several steps to the eigen reconstruction
process. (i) The coarse-scale eigenvectors Û can be transformed using the ker-
nel matrix K as Ũ = KÛ to generate Ũ as an approximation to U . (ii) This
transformation alone is unlikely to set the directions of Ũ exactly aligned with
U . So, we update the directions in Ũ by repeated application of the following
iteration (called power iterations [30]): Ũ ⇐ Γg Ũ Note, here instead of using
Γ we use an adjusted matrix Γg given by Γ g = νI − Γ , where ν is a constant
and I is an identity matrix. The power iterations will direct the eigenvectors
to directions with large eigenvalues. But for fluctuation dynamics, we are inter-
ested in the slow eigen modes with small eigenvalues, hence the adjustment Γ g

is made. In particular, because of Gerschgorin disk theorem [30] the eigenvalues
of Γ are bound to lie in a disk centered around the origin with a radius ν that
is no more than twice the largest element on the diagonal of Γ . (iii) Steps i
and ii need not preserve orthogonality of the eigenvectors in U . We fix this by
a Gram-Schmidt orthogonalization procedure [30]. Finally, the eigenvalues are

obtained from Λ̃ = diag(Ũ
T

Γ Ũ). In [24] we present more details of this coarse
to fine eigen mapping procedure, including a discussion on the number of power
iterations to use; setting the thresholds for convergence and a comparison of the
speed ups obtained over a standard sparse eigensolver for large matrices.

5.1 Collective Dynamics in the Reduced Space: Benchmarking
against GNM

As discussed earlier, the eigenvalue decomposition of Γ yields the shape and
frequency dispersion of equilibrium fluctuations. The shape of mode k refers to
the normalized distribution of residue displacements along the principal axis k,
given by the elements u

(k)
i (1 ≤ i ≤ n) of the kth eigenvector u(k), and the
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associated eigenvalue λk scales with the frequency of the kth mode. In most
applications, it is of interest to extract the contribution of the most cooperative
modes, i.e. the low frequency modes that have been shown in several systems
to be involved in functional mechanisms. To this end, we used the Markov-
chain based hierarchy to build reduced Kirchhoff matrices Γ̃ at increasingly
lower levels of resolution. We then performed their mode decompositions and
propagated the information back over successive levels of the hierarchy, so as
to generate the eigenvectors and eigenvalues for the fine-scale Kirchhoff matrix
Γ . We now show that hGNM maps the structure-dynamics information between
successive levels of the hierarchy with minimal loss in accuracy.

First, our previous study identified ten slowest modes of interest, including
the counter-rotation of the two rings around the cylindrical axis (non-zero mode
1) and other collective deformations proposed to be involved in chaperonin func-
tion [29]. Results presented in Fig. 4 show the mechanism of the dominant mode,
mainly a global twisting of the structure where the cis and trans undergo counter
rotation about the cylindrical axis (mode 1). The most important point is that
these results corroborate previous findings [29, 1] and are reproduced here by
adopting a reduced representation down to m = 21 nodes and mapped back to
full-residue level.

Second, Figure 5a compares the frequencies obtained by the full-residue-
level representation, with those obtained by hGNM, upon propagation of the
topology information from reduced level 4 (Fig. 2c). An excellent agreement is
observed between the reconstructed eigenvalues λ̃ (red curve) and their original
values λ (open circles). In Fig. 5b, we display the correlation cosine between
the eigenvectors u(k) and ũ(k) obtained by the full-residue representation and
the reconstruction from reduced level 4 respectively. Notably, the reduced rep-
resentation contains only 35 nodes. Yet, the correlation cosine with the detailed
representation containing 8015 nodes is almost unity throughout all the leading
25 modes, and above 0.8 for all modes, except the terminal four modes. The
contribution of the latter to the overall dynamics is negligibly small compared
to the large group of slow modes.

Finally, in order to assess the effect of coarse-graining on fluctuation dynam-
ics, we compared in Fig. 5c the mean-square fluctuations obtained from different
levels of the hierarchy with the experimental B-factor values. The theoretical B-
factor for each residue vi is computed using [31]

Bi =
8π2kBT

γ

n∑
k=2

λ−1
k

(
u

(k)
i

)2

, (11)

where the summation is performed over all n− 1 modes in the GNM, or over all
the m−1 reduced eigenvectors and eigenvalues reconstructed from different levels
of the hierarchy in hGNM. Because experimental B-factors correspond to each
atom and our representation at the fine-scale is a summary of atom-atom contact
information for each residue, we average the experimental B-factors over all
atoms for each residue. As shown in Fig. 5c, a correlation coefficient value of 0.86
is achieved between the experimental and theoretical B-factors after mapping
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the structure of 8015 residues into a representative network of 21 nodes. Thus,
the fluctuation behavior of individual residues is accurately maintained despite
a drastic reduction in the complexity of the examined network. Interestingly,
a maximum in correlation coefficient is obtained at an intermediate level of
resolution, m = 133, which may be attributed to an optimal elimination of
noise in line with the level of accuracy of experimental data at this level of
representation.

A B C D E F G H I J K L M N O − U

−0.01

0

0.01

0.02

a. Shape of the dominant mode ui over elements i

b. Displacement Polarity c. Mobility

Fig. 4. Dominant mode shape and mobility a. The labels on the abscissa indicate
the chain identities, A-G belong to the cis ring, H-N come from the trans ring and
O-U are from the GroES cap. The black curve gives the shape of the slowest eigen
mode. The ordinate value is the normalized distribution of residue displacements along
the dominant mode coordinate. b. Ribbon diagram illustrating the polarity of the
displacement, color coded to be red for positive and blue for negative, indicating the
anticorrelated motions of the two halves of the complex. c. Ribbon diagram color-coded
after residue mobilities in mode 1. The mobility of residue vi given by the squared

displacement:
(

u
(1)
i

)2

, with a color code that is red for high and blue for low.

6 Discussion
A new method is introduced in the present study, which permits us to use struc-
tural information at atomic level in building network representations of different
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Fig. 5. hGNM results (a) comparing eigenvalues λ (circles) from a direct decomposition

of the Γ with multi-scale eigensolver spectrum λ̃ (red line). For the direct eigen decom-
position, we use the Matlab program svds.m which invokes the compiled ARPACKC
routine [14], with a default convergence tolerance of 1e-10. (b) Mode shape correla-

tion: diag
(
|ŨT

U |
)
, between the matrix of eigenvectors Ũ derived by hGNM and U

from direct decomposition. (c) Correlation coefficient between the theoretical B-factors
(derived at each level of the hierarchy) vs experiment. The abscissa labels indicate the
size m of the network at successive levels of the hierarchy.

complexity, which lend themselves to efficient analysis of collective dynamics and
information propagation stochastics. The approach is particularly useful for an-
alyzing large structures and assemblies, or cooperative/allosteric processes that
are usually beyond the range of conventional molecular simulations.

We illustrated the utility of the methodology by way of application to the
chaperonin GroEL-GroES, a widely studied structure composed of n = 8015
residues. Notably, we start with the full-atomic representation of the complex,
which involves a total of ≈106 atom-atom contacts (based on an interaction
range of 4.5Å). Interatomic contacts define the affinities of pairs of residues,
which are, in turn, used to define the weights of the connectors between residues
(nodes) in the graph/network representation of the structure. The affinities also
define the conditional probabilities of information transfer across residues follow-
ing a Markovian process. The original network of n nodes is mapped into lower
dimensional representations, down to m = 21 nodes, by an EM algorithm that
maintains two basic properties of the original stochastic process: its Markovian
conditional probabilities and stationary distribution (i.e. communication prob-
ability/potential) of individual residues. Two sets of operators, ensuring model
reduction and reconstruction at different hierarchical levels permit us to perform
the analysis at reduced scales but reconstructing the behavior.
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