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ABSTRACT The previously developed theory for treating the kinematics of polymers in dense media 
(Bahar, I.; Erman, B.; Monnerie, L. Macromolecules 1992, 25, 6309, 6315) is extended to include the 
influence of internal conformational energy barriers on the mechanism of motion. The method is based 
on the solution of a constrained equation of motion in the presence of dissipative forces due to  friction. 
Successive solution of the equation for incremental changes in bond torsional angles up to completing 
one isomeric jump yields the optimal configurational rearrangements of chains of known original structure 
in response to bond isomerization. By repeating the method for an ensemble of Monte Carlo chains with 
different original conformations, the type and extent of coupling between dihedral angles, the correlation 
length involved in local conformational transitions, and the effective activation energies operating on a 
wide spectrum of viscous environments are determined as a function of the relative strength of intra- 
and intermolecular effects. Comparison of results with those of Brownian dynamics simulations supports 
the adoption of the present model as a computationally efficient approach for investigating the kinematics 
of local motions in polymers. 

Introduction 

The mechanism and rate of conformational changes 
in polymer chains are mainly controlled by three fac- 
tors: (i) chain connectivity, (ii) intramolecular confor- 
mational potential, and (iii) interactions with the envi- 
ronment. 

The constraints imposed by chain connectivity operate 
on a wide spectrum of length scales, ranging from a few 
backbone bonds to Rouse type chain segments. The 
effect of connectivity is manifested either by favoring 
coupled bond rotations that highly localize the chain 
movement or by slowing down the isolated motions 
which are not accompanied by short-range compensat- 
ing motions and thus would give rise to large-amplitude 
displacements of chain segments.' 

The internal conformational potential of the chain 
may arise from three sources: bond stretching, distor- 
tion of bond angles, and torsional rotations of bonds. 
Among these, the latter constitutes the softest degree 
of freedom and controls to a large extent the relaxation 
mechanism. In fact, models with holonomic constraints, 
in which bond lengths and bond angles are constrained 
to assume fixed values, have found widespread use in 
treating polymer dynamics. Thus, the short-range 
internal resistance to  motion refers in a broad sense to 
conformational energy barriers opposing the rotational 
isomeric transitions or torsional fluctuations of back- 
bone bonds. 

The interactions with the environment are of either 
intermolecular or long-range intramolecular origin. The 
frictional resistance to motion belongs to this category 
and will be taken up in the present study. 
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In a recently developed formalism treating the kine- 
matics of conformational transitions in  polymer^,^-^ the 
minimization of the cumulative square displacements 
of chain units has been adopted as a fundamental 
criterion for controlling the mechanism of local motions, 
irrespective of intramolecular conformational energetics. 
The methodology inherently incorporated the effects of 
chain connectivity, whereas the internal resistance to 
rotameric transitions arising from the specific chemical 
and structural characteristics of the chain was not 
regarded. In this respect, the model chain was the 
freely rotating chain of polymer  statistic^,^ in which 
bond angles and bond lengths are fixed and bond 
torsions are not hindered by any potential. The optimal 
response of the chain to perturbations in dihedral angles 
has been obtained in these model chains, demonstrating 
the tendency of backbone bonds to undergo coupled 
counterrotations and/or small-amplitude fluctuations 
localizing the motion. Interestingly, several character- 
istics of local motions, which are generally extracted 
from the statistical analysis of long trajectories gener- 
ated by Brownian dynamics (BD)  simulation^,^-^ were 
readily obtainable by the theory. Mainly, the types of 
the most frequent coupled rotations of backbone bonds 
and the distribution of the angular and translational 
displacements of chain units in response to a local 
perturbation conform closely with results from simula- 
tions. Yet, a more refined treatment should consider 
the specific chemical nature and conformational char- 
acteristics of the polymer. The aim of the present work 
is to  extend the previous formalism so as to include the 
effect of torsional barriers on the kinematics of the 
motion. 

The model and the basic formalism are described in 
the next section. The mathematical formulation of the 
theory is presented in the third section, which is 
followed by a section on calculations and discussion. 
Concluding remarks are presented in the last section. 
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Figure 1. (a) A random configuration of a chain. The atoms 
are numbered from 0 ton in the laboratory-fixed frame, OXYZ. 
The first bond based coordinate system x ~ y m  is shown. In 
general, the xi axis of the ith bond-based frame is in the 
direction of the ith bond. The yi axis is in the plane of the ith 
and (i - 1)st bonds and makes an acute angle with the 
extension of bond i - 1. The zi axie completes the right-handed 
frame. 0 is the supplemental bond angle. In general, R, and 
ri denote the position vectors of atom i in frames OXYZ and 
XI.Y'IZI, respectively. Here only Ra is shown. (b) Absolute 
orientation of the chain in space, identified by that of the first 
bond. CP and Y are the polar and azimuthal angles for the 
orientation with respect to  the cwrdinate system OXYZ. The 
third Euler angle x is identified with the torsional angle 
for the first bond. 

Model and Basic Formalism 
Model. A polymer chain of n backbone bonds with 

k e d  bond lengths, 1, and fixed bond angles, 8, is 
considered. Atoms are indexed from 0 to n. The 
coordinates of the atoms are expressed in the laboratory- 
fixed frame, OXYZ, shown in Figure la. The bond 
dihedral angles P),,,, 2 5 m 5 n - 1, are assumed to be 
subject to independent rotational potentials. The total 
number of degrees of freedom of the chain amounts to 
n + 4, n - 2 of them being associated with internal bond 
rotations and the remaining six with the absolute 
position and orientation of the chain. The absolute 
position of atom i in frame OXYZ is denoted as E. 
Accordingly, & = col[Xo YO Zol is the position vector of 
the zeroth atom. The absolute orientation of the chain 
in space is defined by the Euler angles a, Y, and x 
shown in Figure lb. For convenience, the Euler angle 
x will be identified with the torsional angle p1 of the 
first bond, and consequently the index of bond dihedral 
angles will be varied in the range 1 5 m 5 n - 1. Thus, 
the set of generalized coordinates q = {PI, P)Z, ..., q1-1, 

a, Y, Xo, YO, ZO} {ql, qz, ..., qn+4} will be adopted for 
describing the instantaneous configuration of the chain. 
The time derivative of the same set defines the ensemble 
of generalized velocities a, whereas the Cartesian 
components of the velocity of particle i is denoted as vi. 

Basic Approach. In a medium with effective friction 
coefficient 5, the motion of the ith atom will be opposed 
by a frictional force Fti of the form 

Ftt = -Ev, - V v j 9  (1) 

Here V, denotes the gradient with respect to vi and Sr 
is Rayleigh's dissipation function defined aslo 
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9 = (1/2)E-5p7; = ( 1 / 2 ) . 5 x ~ y 4 &  (2) 

The first summation in eq 2 is performed over all atoms 
of the chain. A i  is the ijth element of the operator 
transforming from the generalized coordinate system to 
the Cartesian system as will be discussed below. 

The Lagrange equations of motion in the presence of 
frictional forces is expressed in terms of the dissipation 
function and the Lagrangian L aslo 

i j  

The Lagrangian is given as L = T - V, where T and V 
are the kinetic and potential energies, respectively. V 
being a state function, i.e., independent of velocities, the 
leading term of eq 3 reduces to the acceleration contri- 
bution. In a highly viscous medium, the contribution 
of this term to the equation of motion, as well as that 
of the gradient of T with respect to the generalized 
coordinates, which are both proportional to the mass m 
of the particles, may be neglected as a first approxima- 
tion. This simplification is justifiable by the fact that 
the ratio m/E is commonly of the order of 10-14-10-13 
8, and consequently these contributions are relatively 
small unless motions occurring in this high-frequency 
regime are of direct interest." Within the limits ofthis 
approximation, the Lagrange equation reduces to 

-+-=o av a s  
apj a q j  

(4) 

Thus, the equation of motion is mainly governed by two 
contributions: the change in potential energy with 
respect to position in space, and the forces due to the 
frictional resistance of the surroundings. 

The differential work dWtj done by the ith atom 
against friction reads 

( 5 )  dWti = -Ft;dRi = Vvc9*  V. dt 

which leads to the expression 

dWt = Cawt. = 29dt = exvivi dt (6) 

for the total differential work done by the chain against 
friction. For small incremental displacements 6R, = 
vi& of backbone atoms occurring within short time 
intervals 6t,  eq 6 may be approximated by 

i i 

This term represents the energy dissipation due to 
friction during a differential change in configuration, 
taking place during the time increment 6t. An explicit 
expression for the last summation in eq 7 in terms of 
the differential changes in generalized coordinates is 
readily obtained by combining eqs 6 and 18 of ref 2. 
Substitution of this term in eq 4 yields 

Equation 8 directly follows from the identities F= (1/ 
2MW46t and 4 = 6q/dt. In the absence of a potential 
V, eq 8 becomes equivalent to the minimization of SWt 
with respect to the incremental variations in the 
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may be expressed as a Taylor series expansion in the generalized coordinates. This reduced form is in fact 
identical to the basic equation adopted in the previous 
treatment2 of the kinematics of a freely rotating chain 
model, following an externally imposed perturbation of 
an original configuration. The compromise between the 
cumulative square displacements of chain units and the 
rotational barriers to motion during the steepest descent 
path of reaction coordinate was also invoked by Skolnick 
and Helfand in their multidimensional extension of 
Kramers rate theory to conformational kinetics.12 

Following the above description, the energy change 
associated with conformational transitions in a model 
chain with holonomic constraints would result from two 
contributions: (i) the energy spent to overcome the 
frictional resistance to motion and (ii) the change in 
conformational potential of the chain. The former is the 
work done by the chain against friction during the 
displacement of the atoms, and thus is path-dependent. 
The second is a state function and therefore depends 
on the initial and final configurations. In the most 
general case it includes both intra- and intermolecular 
effects. Here, the intramolecular effects are manifested 
by holonomic constraints and rotational potentials of the 
bonds. Intermolecular effects which are generally ac- 
counted for by explicit Lennard-Jones potentials or 
indirectly through a white noise will not be explicitly 
included in V. Instead, external constraints in the form 
of incremental perturbations of generalized coordinates 
will be adopted. Thus, the conformational potential V 
of the chain will be given by 

n-1 

i=2 

where Vp(qi) refers to the torsional energy of the ith 
bond along the chain. Independence of bond torsional 
states is implicit in eq 9. Following the expression 
proposed by Ryckaert and Bellemans for alkanes, VJqJ 
is taken as a fifth-order polynomial of the f o r d 3  

5 

V&i) = K, x a,  COSrn qi (10) 

where k, is a proportionality constant and the coef- 
ficients ao, ..., a5 are 1.0, 1.3100, -1.4140, -0.3297, 
2.8280, and -3.3943, respectively. 

Using the above expressions for V and SW,, eq 8 reads 
in explicit notation in terms of the generalized coordi- 
nates 

m=O 

asw asw asw 5 -  5 -  5 - 0  a m  asY adRo (11) 

The subscript i in eq 11 varies in the range 1 I i I n - 
1. The potential V, being a function of internal coordi- 
nates only, does not appear in the second line of eq 11. 
The last equality refers to the three derivatives with 
respect to  the components of d&. Explicit expressions 
for the derivatives of 6 Wt with respect to the generalized 
coordinates are presented in the Appendix. 

Mathematical Formulation 
Let us consider the rotational potential V of the chain 

at a given instantaneous configuration q. This potential 

close neighborhood of q" = {pl", p2", ..., -qn-lo, @", VI", 
XO", YO", Zoo> as 

For the particular form of V given by eq 10, the second 
derivative vanishes for i sj. Accordingly, the derivative 
of V with respect to the dihedral angle qm at configura- 
tion q reads 

aviaq, = (aviaq,)qo + (a2via~,2)qoA~m (13) 

for small Aq,. 
In the following the notation Aq, and At, instead of 

dq, and dt, will be adopted for small incremental 
changes in generalized coordinates and for the cor- 
responding time intervals, respectively. Also, the work 
performed at each step will be denoted as Wt, and the 
accompanying change in rotational potential will be 
indicated as AV = V - VO. This notation conforms with 
previous treatment as well as with the usual numerical 
method of solution of the equations of motion. It would 
be implicit in the notation below that all incremental 
changes refer to differential variations consistent with 
the basic approach. 

Inasmuch as aVIaq, = aAVIaAq,, the first line of eq 
11 may be rewritten in the form 

in which the definition AE = W(l2 + AV has been 
introduced. Equations 13 and A-3 are inserted into eq 
14 to obtain the equality 

n-1 

(umj + v",)Aqj +p,Av + wmA@ + 
j=1 

v,*ARo + V', = 0 (15) 

where umj, p,, w,, and vm are defined in the Appendix. 
V'm and v"mj are defined as 

where 6,j is the Kronecker delta equal to unity for m = 
j and zero otherwise. 

If bond s externally constrained to undergo a given 
rotational perturbation Aqs, eq 15 becomes 

n-1 

[u, + Vmj]Aqj + pmAY + w,A@ + v;AR0 = 
j,= 1 
JfS 

-V', - u,AqS (17) 

The subscript q" in the gradient of potential on the 
right-hand side of the equality has been omitted for 
brevity. Likewise, the counterpart of the three equali- 
ties in the second line of eq 11 in the presence of the 
constraint Aqs are 
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Q - 2 =  

n-1 n n L 
P1 
Pz 

Ps-1 
... 

Ps+l 
... 
... 
... 

,Pn-1 

2 pmAqm + c (Dr;Dr,)AY + c (Dr;Bri)A@ + 
m = l  i=O i=O 

[T(Y)T(@) 2 Dril.ARo = -psAqs (18) 
i=O 

n-1 n n c wmAqm + c (BrcBri)A@ + c (Dr;Bri)AY + 
m=l  i=O i=O 
mfs 

n 

[T(Y)T(@) Bril.ARo = -w,Aq, (19) 
i=O 

and 

n-1 n c vmAqm + [T(Y)T(@) DrilAY + 
m = l  i=O 
m t s  

n 

[T(Y)T(@) BrilA@ + (n + l)ARo + -v,Aqs (20) 
i=O 

B and D in eqs 18 and 19 are defined in the Appendix. 
Equations 17-20 are the basic equations of motion to 
be solved simultaneously to determine the new set of 
generalized coordinates following the perturbation of the 
original configuration q". This set of equations may be 
conveniently represented in matrix notation as 

in which the solution is expressed in the form of an 
array of incremental changes in generalized coordinates, 
using the notation 

and 

AX= [AY A@ AXo AYo U0IT (23) 

Avo and E depend on the rotational perturbation of 
the bond s and on the rotational potentials and are given 
by the expressions 

AXo = -[p, w, v,TITAq, 

The matrix QI in eq 21 is defined by 

where U and V" are the matrices whose elements are 
given by equations A-7 and 16, respectively. The order 
of each of these matrices is equal to n - 2, corresponding 
to the dihedral angle Aqm,  with 1 5 m I n - 1, the sth 
row and column being absent. Likewise the matrices 
Q2 and Q4 take the form 
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and 

Q4 E 

W 1  

w2 

WS-1 

w,+1 

... 

... 

... 

... 
Wn-1 

(27) 

1 c Dr;Dri ... ... I 
I I 1% Dri*Bri 

i=O 
Bri*Bri 

i=O 

which readily follows from eq 21. 

Results of Calculations and Discussion 
General Calculation Procedure. Original configu- 

rations are generated for tetrahedrally bonded chains 
of n bonds, each of length 1.53 A, by assigning equilib- 
rium rotational states trans (t), gauche+ &+I, or gauche- 
@-) to bond dihedral angles using the Monte Carlo (MC) 
method. The dihedral angle of internal bond s will be 
assumed to undergo an incremental change Aq,. The 
accompanying set of incremental changes in generalized 
coordinates, mainly bond dihedral angles and absolute 
position and orientation of the chain, are determined 
from eq 29. 

It should be recalled that the perturbation of the 
original configuration Aq, should be small enough for 
representing the change in configuration in terms of 
discrete steps. In order to follow the configurational 
change in the chain accompanying a bond rotational 
jump from one isomeric state to another, for example, 
one should apply the above procedure repetitively by 
imposing a series of successive small incremental changes 
on the dihedral angle of the rotating bond. A choice of 
Aq,  = 3" was observed to be adequate in previous work 
(V = O), inasmuch as adoption of smaller increments a t  
each step was found to yield practically the same 
results. Thus, the rotameric jump of Aq, = 120" would 
be performed in 40 successive steps, i.e., successive 
solutions of eq 29, after updating at  each step the new 
starting configuration. The time interval At correspond- 
ing to each step would be approximately equal to &-l/ 
40 in this case, Itg being the mean isomerization rate of 
an internal bond. 

Upon introduction of the rotational potential V, the 
adoption of smaller Aq,  values, such as Aqs I 1.5", was 
required to ascertain the applicability of the equation 
of motion, eq 4 or 11, in difference form. The work done 
and the potential energy were computed at each step 
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using eqs 7 and 9, respectively, so as to verify whether 
the new state of the system conforms with the energy 
xninimization principle implicit in eq 11. The size of Aq, 
was rescaled by a factor of 2, whenever necessary, on 
the basis of the incremental energy changes occurring 
in two successive steps. The prescription adopted for 
the readjustment of the step size at step k on the basis 
of energy change occurring is as follows: If h E k + l  - h E k  
> 1.2(hEk - h E k - l ) ,  where the subscript k refers to the 
calculation step, AqB is divided by 2. Alternatively, for 
the Case h E k + l  - h E k  < 1.2-l(hEk - h E k - I ) ,  A ~ s  is 
multiplied by 2. The adoption of such variable step size 
increases the efficiency and the accuracy of the calcula- 
tion. 

The above procedure yields the optimal rearrange- 
ment of the chain for accommodating the rotational 
jump of a bond for a given initial configuration. For 
assessing the general response of internal and external 
coordinates to bond rotational transitions, a sufficiently 
large number of MC chains should be generated. This 
approach, which proved to be quite informative on the 
mechanism of the cooperative relaxation in the absence 
of internal conformational energies: will be undertaken 
below for chains subject to barriers hindering bond 
rotations. 
An Illustrative Example. It might be interesting 

to observe, as an example, the behavior of a randomly 
generated MC chain in response to a rotameric transi- 
tion of an internal bond. We consider, for example, a 
chain of 25 bonds with the randomly chosen initial 
configuration &+g-g-ttttg+g-g+g-gtg-tg-tg+g+tg-ttg+g- 1. 
The middle bond is constrained to  rotate by a total 
amount of Aq, = 120", i.e., from the g- to t state, 
through a succession of steps each smaller than 1.5". 
The resulting changes in the generalized coordinates 
and consequently the conformational rearrangements 
of the chain accompanying the rotational transition of 
the middle bond (s = 13) are determined from successive 
solution of eq 29 at  each incremental change Aq,. 

The evolution of the rotational potential of the chain 
and that of the work done against friction throughout 
this particular rotational transition are displayed in 

P 120 . ,  I . I . S . 1 .  - 
' (c) (b)  . 

100 

80- 
. 

40 . 

Figure 2a. The solid curve describes the work WE 
performed at fxed increments in the dihedral angle of 
the central bond; precisely, it is obtained by evaluating 
the differential work done by the chain for accommodat- 
ing each successive torsional rotation of Aq, = 0.025 rad 
(the latter being performed in more than one step 
whenever necessary, as delineated above), using eqs 7 
in difference form with eqs A-1 and A-2. ElAt is taken 
as 20 kcal/(mol&). This value may be estimated as 
follows: for a dihedral angle increment of 0.025 rad, At 
a 0.025Atg-1/(2d3) = 0.003 ns, using an approximate t - g isomerization rate A, of 4/ns.6 If the friction 
coefficient is taken as 2.5 x lo4 kg/(molms), which is 1 
order of magnitude larger than that used for simulating 
dilute solutions of polyethylene6 and polyisoprene* and 
thus corresponds to denser polymeric systems, we obtain 
6lAt = 20 kcaY(mol&). The effect of various choices of 
friction coefficients will be further considered below. The 
dashed curve, labeled by the symbol AV, describes the 
accompanying change in the rotational potential of the 
chain for k, = 2.0 kcal/mol. A steady rise in Ws is 
observed at the initial stages of the rotation of bond s, 
while a t  about Aq, = 90" a sharp increase occurs, 
indicating at this point a relatively large displacement 
of atoms in space. At about the same point, the 
rotational potential of the chain exhibits a substantial 
drop, which would suggest the occurrence of an ener- 
getically favorable conformational change. The reduc- 
tion in rotational energy more than counterbalances the 
work done against friction, as apparent from the result- 
ing change in the total energy AE = Ws I2 + AV, which 
is displayed by the dotted curve. 

Examination of the changes in bond dihedral angles, 
after the externally imposed 120" rotation of the middle 
bond is completed, reveals in Figure 2b that the 
response of the chain to this perturbation is mainly 
manifested by the rotational transition of a single bond, 
the sixth, while all other bonds closely preserve their 
original dihedral angles. In the figure the change in 
torsional angle of all bonds is indicated by filled circles 
except for that of the middle bond s, which is shown by 
a square in order to point out that this particular 

-30 
6.30 " ' ' ' ' . I .  

0 20 40 60 80 100 120 

. 
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rotation is deliberately performed while others occur as 
a response. If one observes the evolution of the dihedral 
angle of the sixth bond, Aq6, in Figure 2c, an abrupt 
change or a rotameric jump is detected at  about Aqs = 
go", which conforms with the picture displayed in Figure 
2a. 

This analysis provides a clear picture of the competi- 
tion between intramolecular conformational energetics 
and intermolecular resistance to  motion, which deter- 
mines the precise mechanism of relaxation following an 
external perturbation. The exact response of a chain 
given to a perturbation of a generalized coordinate 
depends on its original configuration. A correlation 
between bonds 6 and 13 is demonstrated in this par- 
ticular example. However, to  infer some general infor- 
mation on the mechanism of local conformational mo- 
tions or on the degree of correlations between bond 
rotational transitions, etc., a statistically large enough 
ensemble of MC chains with a variety of original 
configurations need to be analyzed, as will be under- 
taken below. 

General Trends of MC Chains. For the analysis 
of the behavior of MC-generated chains, it will prove 
convenient to define a dimensionless ratio relating the 
strength of the two factors affecting the mechanism of 
motion, i.e., friction and rotational energy barriers. We 
may consider, for instance, the ratio 

(30) 

which, upon insertion into the f i s t  line of eq 11 together 
with eqs 7 and 9 leads to 

n-1 5 a n  -[c (ARi)2/Z2 + ko c a, cosrn qil = 0 (31) 
a&, i=o i=2 m=O 

From the examination of eq 31, it is clear that the 
solution is uniquely obtained for fixed values of the ratio 
ko rather than the absolute values of the friction 
coefficient, the isomerization time, and the energy 
barrier for bond torsion. Thus, the results reported in 
this section are expressed as a function of the dimen- 
sionless ratio ko. In principle, the passage to specific 
chains would be established by proper substitution of 
real parameters in eq 30. 

The following aspects of the kinematics of conforma- 
tional transitions will be analyzed in the following: (i) 
the coupling between dihedral angles, (ii) the work and 
overall conformational energy changes accompanying 
bond torsional motions, and (iii) the distribution of 
angular and translational displacements of chain units 
in the neighborhood of a bond subject to a rotational 
isomerization. In general, sets of 2000 MC chains with 
different original configurations have been considered 
for each choice of ko and n in the following, and the 
constrained equation of motion (eq 29) has been suc- 
cessively solved for each incremental rotation of the 
middle bond until the completion of its isomeric transi- 
tion in each MC chain. The theory has been applied to  
chains of length n = 25 and 39, subject to various 
strengths of frictional resistance and heights of rota- 
tional barriers. 

(i) Coupling between Dihedral Angles. The 
changes in the dihedral angles in response to the 
rotational transition of a given bond, averaged over the 
ensemble of MC chains, are displayed in Fi 
Figure 3a is obtained for n = 39 and kd2 = 1 psth 
the rotating bond index s = 20. The ensemble averages 
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n = 39 
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Figure 3. (a) Distribution of the average change, (Aqi), in 
bond dihedral angles in response to 120" rotation of the middle 
bond evaluated from 2000 MC chains of length n = 39 
presented as a function of bond index. Results are obtained 
from the solution of eq 31 (or eq 29) with kd2 = 1 k. The 
rotation of the middle bond s = 20 is performed in steps of 
ApS 5 0.025 rad. (b) Average change, (Aqi),  in bond dihedral 
angles induced by the 120" rotation of the central bond of 2000 
MC chains of length n = 25 presented as a function of bond 
index. Results are obtained from the solution of eq 31 (or eq 
29) with kd2 = 0, 0.02, and 0.10 &, indicating that the 
response of the second neighbor is enhanced with increasing 
strength of internal barriers to rotation relative to frictional 
effects. 
(A& for 4 I i I 36 are plotted against bond serial 
number i and are connected by the dotted line to guide 
the eye. Two important observations are as follows: (i) 
Second neighbors along the chain exhibit the strongest 
response to bond rotation. A counterrotation of about 
14" is undergone by these bonds. First neighbors also 
respond in the same direction but their average change 
in torsional angle is smaller than that of second 
neighbors. (ii) The average changes in dihedral angles 
become vanishingly small beyond approximately sixth 
neighbors on both sides of the rotating bond. However, 
this does not necessarily imply that these dihedral 
angles remain unchanged but rather that they do not 
exhibit a tendency to  rotate in a well-defined direction 
and hence cancel out in averaging over the whole set of 
MC chains. An assessment of the average amplitude 
of torsional motion of neighboring bonds, irrespective 
of the sense of rotation, will necessitate the examination 
of the average changes in the absolute values of dihedral 
angles (IApiI), as will be described below. 

Before proceeding to the examination of ([Apil), we 
compare in Figure 3b the (Api) results obtained for 
various ko values. It is clear from eq 30 that the 
dimensionless ratio ko increases with k,, i.e., with 
increasing strength of internal barriers to rotation 
relative to frictional effects, and becomes zero in the 
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evaluated. Parts a-c of Figure 5 display the evolution 
of the work done (Wt) against friction, the overall 
rotational energy change (AV = V - VO), and the total 
energy change (AE = WtI2 + AW, respectively, as a 
function of the change in the dihedral angle of the 
middle bond. The solid curves are obtained for n = 25. 
For comparative purposes, results for n = 39 are also 
shown by the dashed curves. Here, the curves represent 
the cumulative changes in the energy contributions; i.e., 
they are evaluated by summing up the changes in 
energy occurring at consecutive steps until the comple- 
tion of the isomeric transition of 120", in contrast to the 
curves of Figure 2a in which the energy changes at each 
individual step of -1.5" only were displayed. Results 
are shown for the four cases k d 2  = 0, 0.02, 0.06, and 
0.10 A2, which are denoted by the respective labels a, 
b, c, and d on the figures. Curve a, which corresponds 
to the particular case ko = k ,  = 0 and consequently AV 
= 0, is absent in Figure 5b. For providing an estimate 
of the magnitudes of energy changes accompanying bond 
rotations, the ordinate values corresponding to (/At = 
10 kca14mol*A2) are displayed in the figures. Thus, 
using eq 30, curves a-d in the figures correspond to 
rotational energy coefficients of k ,  = 0, 0.1,0.3, and 0.5 
kcal/mol, respectively. 

We observe in Figure 5a that the work done against 
environment increases with increasing ko, i.e., increas- 
ing k ,  or decreasing elAt, as follows from eq 30. That 
the work done should increase with k ,  is evident. As 
to the effect of glAt, one might also expect at first sight 
an increase in Wt with (/At upon considering eq 7. 
However, it should be pointed out that with increasing 
environmental resistance, the displacements 6R, them- 
selves are reduced, which more than counterbalances 
the effect of the front term (/At in eq 7. 

The work done against environment, averaged over 
all MC chains, is found to increase smoothly during the 
rotameric transition of the central bond in Figure 5a, 
whereas the conformational energy of the overall chain 
exhibits in Figure 5b a peak centered at  about Aq,  = 
60". This peak exceeds the activation energy (k , )  for 
the rotational transition of a single bond in all cases, 
which indicates the simultaneous rotation and/or tor- 
sional fluctuations of one or more other bonds along the 
chain. Calculations repeated with n = 39 for cases c 
and d are found to yield the changes in conformational 
energies shown by the dashed curves in Figure 5b. 
These curves are rather close to those (solid) obtained 
for n = 25. Therefore, the observed change in confor- 
mational potential arises mainly from local rearrange- 
ments of the chain and is practically independent of 
molecular weight. Furthermore, the work contribution, 
displayed in Figure 5a by the dashed curves, also 
remains almost identical irrespective of chain length, 
confirming the local character of the motion. 

The maxima in total energy change curves in Figure 
5c may be identified as the efective activation energies 
for rotameric transition in various restrictive media. In 
all cases, this energy, AE,,, definitely exceeds that of 
a single-bond rotameric barrier. Even if the viscous 
contribution is subtracted from AE, i.e., if attention is 
confined to  the change in the overall conformational 
potential of the chain, shown in Figure 5b, the internal 
energy barrier (V - VO),, to be surmounted during the 
rotameric transition of bond s is significantly larger than 
the activation energy for single-bond rotation. At first 
sight, this observation seems incompatible with the 
experimentally observed14 behavior of polymers in dilute 

5 9 13 17 21 
bond index i 

Figure 4. Average absolute change in bond dihedral angles 
following the rotation of the central bond as a function of bond 
index for n = 25 and K o P  = 0, 0.02, 0.10, and 1.0 k. 

absence of intramolecular rotational potentials. The 
results shown by the empty circles, empty triangles, and 
filled circles in Figure 3b are obtained for ko12 = 0,0.02, 
and 0.10 A2, respectively, and for n = 25. When the 
motion is fully controlled by viscous effects (ko = O), we 
note that the first neighboring bond exhibits the stron- 
gest tendency to undergo a counterrotation, whereas 
upon introducing energy barriers opposing torsional 
rotations, the response of the second bond is gradually 
enhanced. 

The average absolute changes (IAqi() in dihedral 
angles are presented as a function of bond index for n 
= 25 in Figure 4. The results are displayed by the 
empty circles, empty triangles, filled circles, and filled 
squares for ko12 = 0,0.02,0.10, and 1.0 A2, respectively. 
We note that the absolute variations in all dihedral 
angles diminish with increasing rotational barriers. The 
second neighbor exhibits the strongest change in dihe- 
dral angle in all cases, indicating that this is a general 
behavior for tetrahedrally bonded polyethylene-like 
chains, irrespective of the relative strength of intermo- 
lecular vs intramolecular effects. The only consequence 
of introducing intramolecular torsional energy barriers 
is the reduction of the amplitude of dihedral angle 
fluctuations in the close neighborhood of the rotating 
bond, without affecting the general shape of the distri- 
bution curves. In particular, the value k d 2  = 1.0 Az is 
representative of a system (see below) in which the 
internal barriers are significantly strong relative to 
friction effects. The dihedral angle fluctuations of the 
neighboring bonds in this case are strongly depressed. 
From the width of the distribution curves, we may infer 
that the torsional coupling between neighboring bonds 
extends up to approximately bonds s f 4, the remaining 
bonds being weakly affected by the transition of bond 
s. The agreement between shape of the present curves 

* and that resulting from BD simulations of polyethylene 
chainsg is noteworthy, particularly when considering the 
fact that the efficiency of the present method is signifi- 
cantly superior to  that of simulations. 

It should be emphasized that the curves displayed in 
Figure 4 are not restricted to  n = 25 only but are valid 
for chains of different lengths. In fact, calculations 
performed for n = 39 demonstrated that indistinguish- 
able curves are obtained with same data, provided that 
the abscissa is rescaled according to  the rotating bond. 

(ii) Energy Changes Accompanying Bond Tor- 
sions. The average change in the rotational potential 
of the overall chain and the average work done against 
friction during a bond rotameric transition have been 



Macromolecules, Vol. 28, No. 4, 1995 Kinematics of Polymer Chains in Dense Media 1045 

a 
1.2 

0.9 

P 
3 

3" 
4 0.6 

0.3 

0.0 
0 20 40 60 80 100 120 

0 20 40 80 100 120 0 20 40 60 80 100 120 

Aq I 

Figure 5. (a) Evolution of the work Wt done by the chain against friction during the isomeric rotation of an internal bond 
averaged over the optimal path evaluated for 2000 MC chains of different original configurations. The solid curves are obtained 
for n = 25 and three dense media characterized by the parameters (a) kd2 = 0, (b) 0.02, (c) 0.06, and (d) 0.10 k by summing up 
the work performed at successive steps. The dashed curves are obtained for the cases (c) and (d) with n = 39. Their close similarity 
with the solid curves demonstrates that the observed motions are highly localized and independent of chain length. (b) Evolution 
of the average change in the conformational potential of the chin during the isomeric rotation of an internal bond. VO refers to 
the conformational potential of the chain prior to the rotameric transition of bond s. (c) Evolution of the total energy hE = WE /2 + AV of the chain during the rotameric transition of an internal bond. 

solution: the apparent activation energy for a given 
isomeric jump is of the order of a single-bond rotational 
energy barrier, which is also confirmed by theory.lJ5 
However, the main object of the present study being to 
visualize the kinematics of macromolecules in dense 
media, the parameters in Figure 5a-c were intention- 
ally selected so as to reproduce the effect of a rather 
restrictive environment, and the results hold for that 
particular situation. 

If, on the other hand, the strength of the frictional 
effect is reduced relative to internal rotational barriers, 
by increasing the ratio ko for example, we may notice 
from Figure 5b that the difference between (V - VO),, 
and the single-bond rotation barrier height k, gradually 
diminishes. In fact, the ratio (V - Vo)m&p decreases 
approximately from 3.0 to 2.1 in Figure 5b as k d 2  is 
varied from 0.02 to 0.1 A2. For an assessment of the 
behavior predicted by the theory as intermolecular 
effects are further weakened, calculations have been 
repeated for koZ2 = 0.2, 0.6, and 1.0 A2. Curves a, b, 
and c in Figure 6a are obtained by taking k, = 1.0 kcall 
mol and [/At = 10.0,3.33, and 2.0 kcd(mol=8i2), respec- 
tively. The energy barrier (V - Vo)m, for the overall 
conformational rearrangement of the chain gradually 
approaches the activation energy (k ,  = 1 kcdmol) for 
single isolated rotation as e/At decreases. In spite of 
the accompanying increase in displacements, the change 
in the overall energy A E  exhibits the same tendency as 
AV as well, as shown in Figure 6b, which corroborates 
that an apparent activation energy of about a single- 
bond rotational barrier is involved during local confor- 
mational rearrangements of polymers in less restrictive 
environments such as that in dilute solution. 

(iii) Angular and Translational Displacements 
of Chain Units. Close neighboring bonds along the 
chain undergo the spatial reorientations displayed in 
Figure 7 in response to the rotational transition of an 
internal bond. Curves a, b, and c in the figure hold for 
k d 2  = 0, 0.02, and 0.10 A2, respectively. The abscissa 
denotes the bond location relative to the rotating bond. 
Results for n = 25 and 39 are found to be almost 
indistinguishable. The reorientation of the first neigh- 
boring bonds in space is the largest (-55"), as would be 
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Figure 6. (a) Average change in the overall conformational 
potential of the chain, V - VO, accompanying a bond rotational 
transition at three different environments given by (a) g/At = 
10.0, (b) t/At = 3.33, and (c) t/At = 2.0 kcal/(mol*A2). The 
curves are obtained for n = 25 and k, = 1.0 kcal/mol. 
Compared to Figure 5a-c, the present choice of parameters 
corresponds to relatively weaker frictional resistance and/or 
stronger internal barriers. (b) Average energy change hE = 
W42 + AV accompanying bond rotational transition for the 
model chains a, b, and c displayed in (a). The activation energy 
for the overall conformational change, estimated from the 
maxima in the curves, approaches that of single-bond rotation 
k, = 1.0 kcal/mol, with decreasing (/At. 

expected from the symmetric distribution of the torsion 
of 120" on both sides of the rotating bond. The angular 
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Figure 7. Spatial reorientation of bonds in the neighborhood 
of the bond undergoing the rotational transition. Bond indices 
on the abscissa are given relative to the rotating bond. 
Ordinate values represent the mean changes in the absolute 
orientation of bonds in space at the end of the isomeric 
transition of the middle bond. Resulta are obtained for (a) kd2 
= 0, (b) kd2 = 0.02 k, and (c) kd2 = 0.10 A2. o'12v 0.10 I! : :  

angular displacement of bond sfl 

Figure 8. Probability distribution of angular displacement 
of bonds s f 1 in response to the rotameric transition of bond 
s for (a) kd2 = 0, (b) kd2 = 0.02 A2, and (c) kd2 = 0.10 &. The 
distribution curves become smoother with increasing internal 
barriers andor decreasing frictional resistance, although the 
broad character and the three peaks persist. 
displacement of the near neighboring bonds is found to  
increase with ko, i.e., in the presence of higher internal 
barriers to torsion andor weaker frictional resistance. 

Although the mean angular displacement of bonds s 
f 1 is -55", a more detailed examination of angular 
displacements of bonds s f 1 has revealed in previous 
work3 the occurrence of a relatively broad distribution, 
with three peaks located for the particular case ko = 0. 
This result is reproduced in Figure 8, curve a, for 
comparative purposes. Calculations performed with kd2 
= 0.02 and 0.10 A2 yield distribution curves b and c, 
respectively, in Figure 8. Thus, the broad character of 
the distribution is preserved and even enhanced in the 
presence of internal barriers opposing bond torsional 
motions. Three peaks are still observable, although the 
distribution is now rendered smoother with the intro- 
duction of internal barriers, competing with external 
resistance to  motion. This wide variety of angular 
displacements induced by bond rotational transitions 
suggests that the small-amplitude angular distortions 
observed in 2-d NMR experiments16 should not be 
necessarily attributed to the absence of rotameric jumps 
but might be viewed as a manifestation of the coopera- 
tive response of several units along the chain to bond 
rotational transitions. 

The mean displacement of atoms in response to a 
bond rotation is shown in Figure 9 as a function of 
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Figure 8. Average spatia displacements, (LUG) or me cnam 
atoms in response to the rotameric transition of the central 
bond given as a function of their atom index. The curves are 
obtained for (a) kd2 = 0.02 and (b) 0.10 & with n = 25. The 
dashed curve represents the results of Adolf and Ediger,l' 
obtained by BD simulations of polyethylene chains. 

atomic position relative to the rotating bond. The latter 
is assumed to be composed of atoms 0 and 1. The curves 
are obtained for (a) kd2 = 0.02 and (b) kid2 = 0.10 A2 
with n = 25. For comparative purposes, the result of 
Adolf and Edigerl' obtained by BD simulations of 
polyethylene chains is displayed by the dashed curve. 
The displacement of atoms 0 and 1 is of comparable 
magnitude (-0.7 A) in the two approaches as well as 
that of the first three neighboring atoms on both sides. 
However, there is a clear deviation between our results 
and those from simulations as to the displacement of 
atoms located beyond fourth neighbors of the rotating 
bond. The theory predicts a gradual leveling off of 
atomic displacements as the atoms get farther apart 
from the rotating bond, whereas BD simulations yield 
a plateau value of about 0.48 A. Calculations repeated 
with n = 39 for various kid2 also indicate a correlation 
length extending up to f8 neighbors along the chain, 
whereas the remaining atoms exhibit mean displace- 
ments below 0.1 A, except for a few terminal atoms 
which enjoy a higher degree of freedom. Thus, the 
conformational rearrangements induced by a bond rota- 
meric jump is shown to be localized in the present work. 
The existence of a plateau value in BD simulations, on 
the other hand, is attributed to the presence of a 
continuous noise in the system. The observed displace- 
ment in simulations results from the superposition of a 
multitude of relaxation processes induced by rotameric 
jumps taking place at various loci, whereas in our 
present case the noise arising from the simultaneous 
rotation of other bonds driven by external effects is 
totally eliminated. We note, furthermore, that the 
second neighboring atom in model chains of n = 25 have 
a tendency to undergo relatively large displacements, 
compared to first neighboring atoms. However, ad- 
ditional calculations with n = 39 and kd2 = 0.02 A2 
indicate that this feature does not persist in longer 
model chains subjected to stronger environmental ef- 
fects, in agreement with the distribution obtained by 
BD simulations. 

Concluding Remarks 
In the present work, a new method has been devel- 

oped for determining the unique response of a given 
chain of known configuration in a dense environment 
to a specific perturbation. The method relies on the 
solution of the constrained equation of motion in the 
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presence of frictional forces, eq 3, which reduces to the 
particular form given by eq 11 for small incremental 
perturbations in the absence of inertial effects. Adopt- 
ing realistic chain conformational and geometrical 
characteristics, with mathematical methods widely 
employed in chain statics, the matrix equation, eq 29, 
is derived and solved with the aim of visualizing the 
kinematics of rotational isomerization in various MC- 
generated chains. Applications, advantages, and future 
extensions of the approach may be summarized as 
follows: 

1. For a known original configuration it is possible 
to follow up the most probable response of the macro- 
molecule to an externally monitored perturbation of one 
or more degrees of freedom. Here a bond dihedral angle 
was rotated and the accompanying change in all other 
generalized coordinates was observed. To infer some 
general information on the kinematics of conformational 
rearrangements, an ensemble of MC-generated original 
configurations were explored. However, the method 
may be particularly useful in macromolecules with well- 
defined equilibrium configurations such as proteins 
having a unique native state. The precise response of 
the specific structure to site perturbations and the 
existence and strength of correlations between various 
degrees of freedom may be identified in known struc- 
tures, as illustrated in the examples of Figure 2a-c. 

2. The type and extent of coupling between bond 
torsions depend on the interplay between intramolecu- 
lar and intermolecular effects. In the absence of inter- 
nal barriers to  rotation, first neighbors undergo the 
largest counterrotation in response to  a bond isomer- 
ization. As internal barriers become operative, the 
response of the second neighbors takes over that of the 
first one, as shown in Figure 3b. Insofar as the absolute 
changes in bond dihedral angles are concerned, distor- 
tion up to  -50" occurs from the part of the first two 
neighbors in the absence of internal barriers. The 
amplitude of these distortions is gradually attenuated 
with increasing torsional barriers although the distribu- 
tion of (IAqiI) about the rotating bond preserves its 
shape, as demonstrated in Figure 4. Yet, this distribu- 
tion which was obtained for tetrahedrally bonded chains 
may change with the backbone geometry, as suggested 
by the BD simulations of polyisoprene by Ediger and 
Ad01f.~ 

3. Effective activation energies for bond isomerization 
in various media are obtainable by the presently devel- 
oped model. In dilute solution, apparent activation 
energies of about one single barrier height for bond 
torsion underlie local conformational rearrangements 
as demonstrated in Figure 6a,b, whereas with increas- 
ing environmental resistance, coupled torsion of two or 
more bonds becomes necessary and the effective activa- 
tion energy during bond isomerization definitely exceeds 
that of single bond transition. Therefore, in a highly 
viscous environment like the bulk state above but close 
to the glass transition temperature, the apparent acti- 
vation energy is significantly marked by intermolecular 
effects. 

4. A correlation length covering up to f8 neighboring 
atoms is observed when atomic displacements ac- 
companying bond rotations are considered. Atoms of 
the rotating bond translate on the average by -0.7 A 
during isomerization, in conformity with BD simula- 
tions. The apparent shorter-range coupling in BD 
simulations is attributed to  the superimposition of 
several modes of relaxation preventing one from dis- 
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tinguishing the net effect of one single bond rotation. 
5.  The conformational energy V approximates in the 

present work the torsional potential of polyethylene-like 
chains, with preference for the trans isomeric state over 
the gauche* states. V may be deliberately selected so 
as to account for other types of the intramolecular 
interactions, leading, for example, to helices as a result 
of preferential occurrence of gauche states. Addition- 
ally, the mechanism of relaxation in response to bond 
isomerization may be studied in a variety of chemical 
structures with different intrinsic conformational char- 
acteristics. 

6. A broad distribution of small-amplitude changes 
in bond dihedral angles is predicted by the theory in 
the close neighborhood of a rotating bond. This suggests 
that the 2-d NMR observation of small fluctuations in 
bond rotational angles by Spiess and collaborators16 
does not necessarily imply the absence of jumps between 
rotational isomeric states but appears as a consequence 
of the cooperative motion of chain segments for accom- 
modating bond torsional transitions. 
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Appendix 
Here we present a brief summary of the expressions 

obtained in previous work2v4 for the derivatives appear- 
ing in eq 11. The reader is referred to the original 
papers for details of derivation. Following the conven- 
tional treatment of chain conformational statistics,5J8 
it proves mathematically convenient to define local 
bond-based coordinate systems xygi appended to each 
backbone bond i, 1 I i I n. The xi axis is in the direction 
of the ith bond, and the yi axis is in the plane of bonds 
i and i - 1, making an acute angle with the prolongation 
of bond i - 1. The zi axis completes a right-handed 
frame. The transformation from frame i + 1 into frame 
i is performed with the use of the transformation matrix 
Ti. The position vector ri of the ith atom relative to the 
local frame xpyozo affiied to the first atom of the chain 
is evaluated from 

where 1 is the local bond vector col(Z 0 0) for bonds of 
length I ,  E is the identity matrix of order 3, and Gi is 
the conventional generator matrix for determining ri.18 
The summation starting from index 1 includes the 
rotation of the first bond, which represents one Euler 
rotation. The passage to  absolute position vectors R, 
is readily established by the identity 

Ri = T(Y?)T(@)ri + % (A-2) 

where T(W and T(@) are the transformation matrices 
accounting for the orientation of the first bond of the 
chain in space. 

Adopting this framework, the first term in the first 
line of eq 11 is obtained from 

where the coefficients of the incremental generalized 
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coordinates are defined as 

i=m+l 

with the summation index k = max(mj), and 

k=j+l 

where A, B, and C are unitary matrices yielding the 
derivatives of the transformation matrices according to 
the relationships 

and finally D is defined as D = T(@ITCT(@), the 
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superscript T indicating the transpose. Expressions 
derived similarly for the derivatives appearing in the 
second line of eq 11 are explicitly given in ref 2. 
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