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The spatial orientation of vectors rigidly embedded in polymer chains are described in terms 
of time-dependent joint probability distribution functions. Serial expansion in terms of 
double spherical harmonics is adopted for the probability distribution functions, with the 
coefficients therein evaluated from Brownian dynamics simulations. Truncation of the 
series after the second-order harmonics accurately reproduces the results of Brownian 
dynamics simulations for a 50 bond polyethylene chain whose ends are held fixed at 
various extensions. 

I. INTRODUCTION 

The anisotropy of segmental dynamics in polymer 
chains has been investigated some years ago in terms of 
double spherical harmonics by Tao’ and Jarry and Mon- 
nerie.’ These authors formulated the time-dependent ori- 
entation distribution for vectors affixed to chains in a form 
suitable for the study of local chain dynamics by polarized 
fluorescence experiments. In recent years, interest has been 
refocused on the problem of the anisotropy of local static 
and dynamic orientational correlations following the devel- 
opments in deuterium NMR spectroscopy.3 The present 
paper tests the adequacy of spherical harmonics series ex- 
pansion of the joint distribution function for chains with 
fixed ends at various extensions. 

Orientational motions of segments depend sensitively 
on intramolecular and intermolecular configurational char- 
acteristics of the chains and are therefore of significant 
interest for the understanding of polymer behavior. In the 
preceding paper,4 results of Brownian dynamics simulation 
were used to study the internal orientational dynamics of 
deformed polyethylene model chains as a function of their 
end-to-end separation. The rates of transitions between iso- 
merit states and bond orientational autocorrelations and 
cross correlations were observed to be strongly affected by 
the perturbation of chain dimensions. Conformational cor- 
relation functions were evaluated therein for backbone 
bonds and the two autocorrelation functions, M,(t) and 
M,(t), associated with the reorientation of bond vectors 
were analyzed. In the present paper, the analysis is ex- 
tended to the study of local orientational motions in de- 
formed chains as seen by a laboratory-fixed observer at a 
given orientation with respect to the chain vector. Time- 
dependent joint probability functions in the form of a dou- 
ble spherical harmonics series are developed for the orien- 
tation of bond vectors. The coefficients of this series are 
evaluated numerically for a polyethylene chain of 50 bonds 
using the results of the Brownian dynamics simulation de- 
scribed in detail in Ref. 4. 

In Sec. II the serial expression for the time-dependent 
probability distribution function is given. In Sec. III the 
coefficients of this series are evaluated from simulations for 
chains of various extensions. The series are developed up to 

the second-order terms in the spherical harmonics and the 
analytical expressions are compared with the results from 
Brownian dynamics simulations. Graphical analysis of the 
probability distribution functions in Sec. IV indicates the 
suitability of the closed form expressions for an effective 
description of local orientational dynamics of polymer 
chains. 

II. DISTRIBUTION FUNCTION FOR SEGMENTAL 
ORIENTATION 

The z axis of the laboratory-fixed coordinate system is 
chosen along the direction of the end-to-end vector r. The 
nth atom is kept fixed along the z axis. The zeroth atom of 
a 50 bond chain is located at the origin. The z axis chosen 
in this manner forms an axis of cylindrical symmetry about 
which all configurations of the chain are equally accessible. 
The orientational dynamics of a vector m, shown in Fig. 1, 
is analyzed. m is assumed to be rigidly affixed to a point 
along the chain. The axes shown in Fig. 1 are parallel to 
the respective axes of the laboratory-fixed coordinate sys- 
tem. The state of separation of the two ends of the chain is 
represented by the parameter ;1 defined as the ratio of the 
fixed end-to-end distance r to the root-mean-square dis- 
tance of the end-to-end vector of the unperturbed chain. 
Four different values of extension ratios il are considered in 
this study as shown in the third row of Table I. 

The instantaneous orientation of m may be described 
by spherical polar angles $= (w,Y), where w is the angle 
between the z axis and m, and o is the angle between the x 
axis and the projection of m on the xy plane. The joint 
probability of orientation fi at time t and fi, at time to for 
the vector m is denoted as p,(n,t;$,,tc) for a chain with 
end-to-end separation r. This probability may be expressed 
in terms of a double spherical harmonics series as 

co co k I 

Pr(W~o,~o)= c c c c gy;“Ygwo)Y~(w*, 
k=O I=0 m=-k “z-1 

(1) 

where Yr ( no) are the spherical harmonics given by’ 
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guishable and odd powers of cos w necessarily vanish when 

m t=O. This point will be discussed in more detail later. 
The following relations exist between the coefficients of 

Eq. ( 1) from cylindrical symmetry: 

a~~=a;m-“=a~lSmn, (6) 

where 6,” is the Kronecker delta. With these definitions, 
Eq. ( 1) may be written up to the second-order terms in the 
spherical harmonics as 

Pr(a9t;n09fO)=& 
( 

l+ ii (fi)rfi ) (7) 
i=l 1 

where the nine functions fi are given as 

f,=(3/2)“*(cos o+cos wo), 

f~=~(5/2)“*[(3cos*oe-l)f(3Cos*W-l)], 

f3=f(30)“2[Cos wo (3 cos*w- 1) 

+cos w (3 cos%+ l)], 

f4=3 cos 00 cos w, 

FIG. I. Orientation of the vector m with respect to the laboratory-fixed 
frame xyz, defined by the polar angle w and the azimuthal angle I). 

=(-l)m 
i 

(2k+l)(k--m)! l’* 
4n(k+m)! ) 

~(COS w)eimy 

~W = qwfm 

(2) 
with Q(cos w) expressed in terms of the Legendre poly- 
nomial Pk(cos w) of degree k as 

c(cos a) = (sin*@) dxm CP (cosw). k (3) 

Pk(cos w) is equal to (cos o) and ( f cos* o-f) for k= 1 
and 2, respectively. The asterisk in the superscript position 
in Eq. ( 1) denotes the complex conjugate and UT: is the 
coefficient obtained as 

alt;“= (qYf&)) qYa)*), (4) 

= 
ss Pr(fwb,~o) q(w Y;w*d%dsz, (5) 

n n0 

where da = sin o do fl and &lo=sin o. do0 dtio and the 
variable w and $ vary in the ranges O<w<rr and 0<7,1j<2~. 
The angular brackets with the subscript r denote the time 
average over all possible configurations of the chain with 
fixed r. 

We define the probability function p,(C$t;~,,t,) in Eq. 
( 1) as the probability obtained for a single chain with fixed 
r along the z axis. In adopting this definition, we pay at- 
tention to directivity along the chain by assuming that the 
two ends of the chain are distinguishable. We make this 
choice in the interest of interpreting our computer simula- 
tion results obtained for the single chain. This choice of 
averaging does not obtain, for example, in spectroscopic 
experiments where the two ends of chains are not distin- 

TABLE I. Simulation data. 

Run I II III IV 

a 0.37 0.9 1 1.38 2.00 
tf (us) 16.5 18.0 17.0 18.0 

f~=~(3coszw~-1)(3cos2w-l), (8) 

f6=$ 2”* sin o. sin w cos($+r+!~~), 

f7=? 2”* sin o. cos 00 sin w cos 0 c~s(~--~~), 

fs=~(5)“*[sinwocos wosinw 

+sin w cos w sin oo]cos(+$o), 

fg=$$ 2”* sin 2 wosin * w cos 2(+!~--$~). 

The averages appearing in Eq. (7) are defined as 

(fi)r= S, J~fiPr(~~~~OJO)~nO da. (9) 

For an ensemble of chains with indistinguishable ends for 
which the z axis may equally be directed from the nth atom 
to the zeroth atom, the averages ( fi), containing odd pow- 
ers of cos w. should reduce to zero, thus leaving the four 
averages (f2>,, (fs),, (f6),, and (f9>r Evaluation of the 
functions (f i)r completely describes the probability distri- 
bution function up to the second-order terms in the spher- 
ical harmonics. 

Ill. EVALUATION OF (f,), FROM BROWNIAN 
DYNAMICS SIMULATION DATA 

In this section, the averages (fi), are evaluated from 
trajectories of the vector m over sufficiently long-time 
ranges by using the Brownian dynamics simulations of Ref. 
4 for a polyethylene chain at four different degrees of ex- 
tension il. The vector m is chosen in the present study as a 
unit vector along the backbone carbon-carbon bond. All 
calculations throughout the paper are based on the average 
behavior of the central 20 bond vectors of the chain. The 
total duration of the four simulations are shown in the 
second row of Table I. Time steps of 5 fs were used in 
simulations. The averages are calculated for the four runs 
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FIG. 2. Dependence of the coefficients (fi), and (fi), defined in Eqs. 
(8) and (9) on the extension ratio A. The solid and open circles are 
computed for (f,), and (f2),, respectively, from Brownian dynamics 
simulations of 50-bond chains. The curve was obtained (Ref. 6) for (f2)r 
in a recent Monte Carlo study of orientation in deformed potential-energy 
chains. 

by using Eq. (2). The first two averages, (fi), and (f2)r 
are independent of time inasmuch as they depend only on 
the instantaneous values of o and the simulations are per- 
formed at steady-state conditions. Their dependence on the 
degree of extension are shown in Fig. 2. The solid circles in 
Fig. 2 represent the (fl)r values obtained from simula- 
tions. The open circles are for (f2)r. The solid line is ob- 
tained for (f2)r from a previous Monte Carlo study6 of 
orientation in deformed polyethylene chains. The points 
and the curves indicate the good agreement between 
Brownian dynamics simulations and the Monte Carlo cal- 
culations. Small differences between the results of the two 
methods may be attributed to the fact that the bond ori- 
entational potentials were taken to be pairwise dependent 
in the Monte Carlo calculations while they are assumed to 
be independent in the present Brownian dynamics simula- 
tions. The curve as well as the open circles in Fig. 2 exhibit 
the dominant A’- l/A behavior of the orientation function. 
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FIG. 3. Time decay of the coefficients (a) (fJ), and (b) (f4)r, defined in 
Eqs. (8) and (9), obtained from BD trajectories of deformed 50-bond 
chains with the indicated degrees of extension at 400 K. 

A- 
,” 
Y 

-----._____ 

U." 
0.00 0.05 0.10 0.15 0.20000 005 0.10 0.15 0.20 

t (W t m 

FIG. 4. Time decay of the coefficients (a) (fs), and (b) (f6)r. See legend 
to Fig. 3. 

The decay of the functions (fj), and (f,+)r with time 
are presented in Figs. 3 (a) and 3 (b), respectively, for the 
four different degrees of extension. In Fig. 3(a) the curves 
display different relaxational behavior at different degrees 
of extension. Strongest time dependence is observed for the 
intermediate extension of A = 1.38. The highly compressed 
chain exhibits only a small amount of decay. The depen- 
dence of (f4)r on strain presented in Fig. 3(b) exhibits, on 
the other hand, a systematic pattern such that the highly 
stretched chain rapidly decays to its asymptotic value 
while both the magnitude and the rate of decay for the 
highly compressed chain are significant. The behavior of 
(fs), and (f6)r are shown in Figs. 4(a) and 4(b), respec- 
tively. Both functions depend strongly on time and exten- 
sion. For a given A, (fs), asymptotically converges to the 
square of the corresponding (f2)r as dictated by the ex- 
pressions given in Eq. (8). The decay curves for the func- 
tions (f7)r and (fs), are displayed in Figs. 5(a) and 5(b). 
The values of (fs), for A= 1.38 and 2.00 are very close to 
each other which is representative of a saturation effect at 
higher levels of stretching. Large reduction in the values of 
(fs), upon compression to ;1=0.37 should also be noted. 
Finally, the decay curves for (f9), are given in Fig. 6. The 
strain dependence of these curves exhibits the same trend 
as that of (j-s),. 

2.0 20 
(4 08 

1.5 1.5 

A- 
i 

21.0 'A 
Y 

•~ 

l \ 1.0 
A- 
2 

. ‘.y ._ A = 2.00 \ 
-.a hP200 Y 

x. --w . 
---w..-- --.-.C*- 

0.5 ~~.~.. *..1_3%-- 0.5 
---. 1.39 

-. --"..._" 0.91 
.-.- 0.91 .".."._."*.. 

0.0 037 . ..". "." "...!.!L.".. . . . . 0.0 . .-.-. . ..-.-. I." 
0.00 0.05 0,s 020900 0 05 0.10 015 0.20 0.10 

t m9 tow 

FIG. 5. Tie decay of the coefficients (a) (f7)r and (b) (fs),. See legend 
to Fig. 3. 
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FIG. 6. Time decay of the coefficient (J-s),. See legend to Fig. 3. 

IV. GRAPHICAL PRESENTATION OF THE 
DISTRIBUTION FUNCTIONS 

In order to illustrate some features of the distribution 
functions, the surfaces generated from Eq. (7) for 
p,(fi,t;Oo,to) are plotted in Figs. 7 and 8 for vectors with 
specific initial orientation no in chains of different exten- 
sions. The reorientational behavior of two major classes of 
vectors, namely those parallel and perpendicular to the 
direction of stretch are investigated in Figs. 7 and 8, re- 
spectively. Inasmuch as the conformational transitions in 
chains with fixed end-to-end separation conform with a 
stationary process, the elapsed time f-r, rather than the 
two absolute times f. and I, is of importance. The value 
t-to = 0.5 ns is considered in most of the calculations. This 
time is of the order of the relaxation time for the reorien- 
tational motions of m. For economy of space, results for 
the two extreme cases of deformation, A=O.37 and A 
= 2.00, are displayed in parts (a) and (b) of Figs. 7 and 8. 

In Figs. 7(a) and 7(b), the normalized probability 
surfaces for those vectors which were originally parallel to 
the z axis, i.e., wo=oO are shown for the two extension 
ratios (a) A=O.37 and (b) A=2.00, at t--to=0.5 ns. The 
surface remains constant along the $ axis, indicating that a 
vector originally along the z axis may result in any direc- 
tion around the end-to-end vector with equal probability. 
This is a natural consequence of the cylindrical symmetry 
about the z axis. The dependence on o, on the other hand, 
may be observed from a given cross section of constant $. 
The stronger tendency of alignment along the stretch di- 
rection in the highly extended chain is clearly observable. 
The time evolution of a given probability surface may be 
seen from the comparison of Figs. 7(a) and 7(c), on the 
other hand, which are obtained for the respective time in- 
tervals t- to=0.5 and 1.5 ns, for the compressed chain. 
With increasing time, the distribution of w approaches the 
equilibrium distribution of orientations with respect to the 
z axis which will be reconsidered later. 

p,(% k n,,to 80 

(a) 
Ygo V. 

18d 

0.145 

p$L t; a,, to) 180 

fb) 

0.0069 

P,oLt;~,Jo 

180. ” 

FIG. 7. (a) Time-dependent orientational probability distribution func- 
tion pr (R,@!,,,te) as a function of Sz = (a,$) calculated from IQ. (7) for 
bond vectors originally along the z axis (oe=o”) in the chain subject to 
the extension ratio L-=0.37 at t-&,=0.5 ns. (b) Probability surface pr 
(n,r;fI,,t,) for oo=o”, t-b=0.5 ns, and ~=2.00. (c) Probability surface 
pr (Cl,t;~,,,fo) for o,=o”, t-to= 1.5 ns, and A=O.37. 

In Figs. 8 (a) and 8 (b), the probability surfaces calcu- 
lated from Eq. (7) are shown for bond vectors which were 
originally perpendicular to the z axis and parallel to the x 
axis, i.e., oo= 90” and $o=Oo. The extension ratios A =0.37 
and 2.00 are considered in Figs. 8(a) and 8 (b), respec- 
tively, with the same time interval of 0.5 ns. The general 
sloping down of the surface as $ increases from 0” to 180” 
indicates that the vectors m did not have sufficient time to 
spread out in the xy plane during the time interval of 0.5 
ns. The higher ordinate value observed in Fig. 8(b) is 
again indicative of the enhanced tendency of the vectors 
perpendicular to the stretch direction in the highly ex- 
tended chain, to escape their original orientation and to 
align along the preferred directions w =o” and 180”. It is 
noted that the sense 0” is preferred rather than 180”. This is 
due to the fact that the two senses fr of the end-to-end 
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0.0164 

P,mJ;fi,,t,) 

(a) 

186 ” 

FIG. 8. (a) Probability surface pI (fi,r;&&) as a function of Cl= (o,$) 
calculated for bond vectors originally perpendicular to the .z axis in the 
compressed chain. CL,= (o,,,&,) = (90”, o”), L-=0.37, and t-to=0.5 ns. 
(b) Probability surface pr (n,t;CI,,rc) for (oe,$,) = (9o”,V), t-t,=OS 
ns, and A=2.0. 

vector are distinguishable for the presently investigated 
bond vectors. Bond vectors exhibit a higher tendency to be 
oriented along +r sense, unless the chain is infinitely long. 

In Figs. 9 (a)-9 (c), the dependence of the probability 
surface on the polar angles w,-, and o of m, irrespective of 
the azimuthal angles $e and 4, are shown. The resulting 
surfaces represent the probability p,( w,t;wo,to) of the time- 
delayed joint event (o,tp&). Summation over the azi- 
muthal angles corresponds to integration of Eq. (7) with 
respect to these two variables. Performing the integrations 
leads to the joint probability, pr(w,t;wo,to) of the polar an- 
gles of m as 

pr(09$~OJO)z~ 
( 

I+ jl Ui)i-fi 
) 

. 

The surface is obtained by summing all occurrences of m 
over the full range of azimuthal angles, O”<~o<360” and 
0”<$(360”, for t-t,=03 ns in Figs. 9(a) and 9(b), and 
for t-t,,=13 ns in Fig. 9(c). Comparison of Figs. 9(a) 
and 9(b) obtained for il=O.37 and 2.00, respectively, re- 
veals the pronounced effect of chain extension on the time- 
delayed joint probability of polar angles. The relatively dif- 
fuse distribution of polar angles in the compressed chain is 
strongly sharpened and biased towards low values of 
(w,wa) with increasing extension, as expected. Comparison 
of Figs. 9(a) and 9(c), on the other hand, displays the 
time evolution of the same probability surface obtained for 

(b) 
180 

0.2612 

p,bJ,t w,,t,1 

(4 
FIG. 9. (a) Dependence of the probability distribution function pr (w,t; 
w&) given by Fq. (9) on the polar angles tie and o, for bond vectors in 
the highly compressed chain with A=O.37 at the time interval t-tc=O.S 
ns. (b) Probability surfacep, (w,t;w&) for t-&,=0.5 ns and /i=2.0. (c) 
Probability surface pr (o,t;e~-&) for t-to= 1.5 ns and /1=0.37. 

A=O.37. The probability distribution obtained at long 
times in Fig. 9(c) indicates that the equilibrium state 
(w,we) = (go”, 90”) corresponding to transverse orienta- 
tions of bond vectors with respect to the z axis is relatively 
favored in the case of compressed chains. One may better 
visualize the distributions by considering the intersections 
of the surface by planes perpendicular to the w. axis. The 
curves obtained in this manner show the probability of 
occurrence of the final orientation w for a vector m which 
was initially at tie. Thus, the plane at wo=O” in Fig. 9(c) 
shows that bonds which were originally along the direction 
of the end-to-end vector r will acquire a broad distribution 
of orientations after 1.5 ns. Similarly, the plane at oo=90” 
shows that bonds which were originally perpendicular to r 
will orient more along the direction of r and much less in 
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FIG. 10. Time-dependent conditional probability qr (o,r;w&) of occur- 
rence of the polar angle o at the end of t-t,=03 ns for bond vectors 
originally along r, in chains with different degrees of extension. The open 
circles are the results from BD trajectories and the curves are calculated 
using Eqs. ( 10) and (11). 

the direction of -r, in agreement with the implications of 
Fig. 8(b) discussed earlier. 

V. COMPARISON BETWEEN NUMERICAL AND 
ANALYTICAL RESULTS 

The curves shown in Fig. 10 are obtained from Eq. 
(10) for the four values of A and the time interval t-to 
=0.5 ns. The ordinate values represent the conditional 
probabilities qr(w,t;oo,to) which are defined as 

IS 

a 
=pr(w,t;oo,to)sin w Pr(ti,t;tiO,tO)sin w do 

0 

pr(WwO,tO)sin u 
= 

P,(~oJo) ’ 
(11) 

where qr(o,t;wo,to) gives the probability of occurrence of 
the orientation w at time t, given that the studied vector 
makes initially an angle o. with the direction of extension. 
Thus, the surface represents the time-delayed normalized 
distribution of polar angles for those bonds which were 
originally along r. The points are the results from Brown- 
ian dynamics simulations, obtained from direct counting of 
the joint event (~o*AtiO,tO;~fAti,t), with t-to=0.5 ns 
and w. = 0”. In order to have a sufficiently large population, 
the intervals in the counting process were taken as Aw, 
=Ao= lo”. The agreement between the simulation results 
and the analytical expression is remarkable although the 
latter is truncated after the second-order terms. Negative 
values of the probability in part (d) of Fig. 10 indicate that 
the second-order approximation becomes insufficient as the 
degree of stretching becomes large. As expected, the curves 
become more sharply peaked and their maxima shift to 
smaller values of w upon stretching. However, the shift is 
relatively small and moves from about 60” for /2=0.37 to 
40” for a=2.00, 

(b)A-0.91 

LIrEKi 

0 60 120 1800 60 120 160 
0 co 

FIG. 11. Normalized equilibrium probability distribution function p,(o) 
of the polar angle w in chains with different degrees of extension. The 
open circles are the results from BD trajectories and the curves are cal- 
culated from Eq. (12). 

Further integration of Eq. ( 10) over the polar angle w. 
after multiplying by sin w. results in the equilibrium prob- 
ability distribution p,(o) of the polar directions as 

x(3c0s%0-1)1. (12) 

This quantity represents the equilibrium distribution of 
bond orientations with respect to the end-to-end vector r, 
inasmuch as r coincides with the z axis. Predictions of Eq. 
(12) are compared in Fig. 11 with results of Brownian 
dynamics simulations for the four different degrees of 
stretching. The good agreement between the numerical and 
analytical results confirms once again the suitability of the 
second-order expansion of time-dependent distribution 
functions in terms of spherical harmonics for an effective 
description of local orientational behavior of the chain.7 

VI. CONCLUSIONS 

Series expansions has been widely used in chain statis- 
tics for representing the probability distribution functions 
associated with the equilibrium conformational properties 
of polymer chains. A common example is the Hermite 
polynomials series employed for the distribution of the 
end-to-end separation vector r. Monte Carlo chain gener- 
ation technique is conveniently used to determine the mo- 
ments which appear in the coefficients of these series ex- 
pansions. In analogy to this common procedure of 
equilibrium statistics, a series expansion is proposed in the 
present work for the time-dependent joint probability dis- 
tribution of spatial orientations of vectorial quantities rig- 
idly embedded in polymer chains. The Brownian dynamics 
simulation method is used in this case instead of Monte 
Carlo technique for the estimation of the time-dependent 
averages appearing in the coefficients of a spherical har- 
monics series. Comparison of the predictions of the series 
with the results from Brownian dynamics simulations con- 
firms that the truncated series expansion may be safely 
employed for a quantitative analysis of local orientational 
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dynamics in deformed chains. Brownian dynamics simula- 
tion rests on the assumption of a Markoff process. The 
present calculations show that this Markoff process may 
accurately be described by a second-order series in spher- 
ical harmonics. 

Present calculations were performed for deformed 
chains of 50 bonds. The analysis demonstrates that trun- 
cation of the series after the second-order spherical har- 
monics is suitable for an accurate description of the local 
orientational dynamics in those chains. For longer chains 
subject to weak deformation, the chain segments enjoy a 
higher degree of flexibility and, on a local scale, the orien- 
tation behavior of bond vectors approaches an unbiased 
distribution. As a result, the coefficients with odd-powered 
averages in the series will be vanishingly small and only the 
contributions from the remaining terms will survive, lead- 
ing to much simpler expressions. 

The description of local orientational dynamics by a 
closed form expression for time-delayed joint probability 
function allows for the prediction of the dynamic behavior 
of specific vectors observed in various experimental tech- 
niques. Examples are C-H bond vectors in NMR relax- 
ation, transition moment vectors in fluorescence polariza- 
tion, dipole moments in dielectric relaxation, etc. For the 
application of the presently developed probability distribu- 
tion formalism to those specific vectorial quantities, it is 
sufficient to know the spatial orientation of those vectors 
with respect to the chain vector. Thus, the use of analytical 
expressions for time-dependent orientational distribution 

functions may avoid repetitive simulations and may be par- 
ticularly useful as a substitute for extensive computational 
analysis. 

Inasmuch as the coefficients in the series are evaluated 
in a semiempirical way, based on BD trajectories, it should 
be noted that the expressions for the time-dependent dis- 
tribution functions suffer from the same limitations as 
those inherently present in the simulation techniques. Ab- 
sence of intramolecular effects such as bond rotational in- 
terdependence and volume exclusion, and neglect of inter- 
molecular contributions such as specific solvent effects and 
hydrodynamic interactions are the main assumptions 
present in the BD simulations which are readily reflected 
upon the distribution functions. 
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