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Static and dynamic correlations between bond conformations and reorientations are examined 
by the Brownian dynamics simulation technique for polymer chains with fixed ends. 
Polyethylenelike model chains are considered. Rates of rotational isomeric transitions and 
time evolution of orientational correlations are analyzed for various extensions of the 
chain. The more extended chains exhibit the highest mobility in the short-time scale but possess 
the lowest effective rate of rotational isomerization as follows from a hazard analysis 
covering time ranges up to 10 ns. The time decays of bond orientational correlations are 
reproducible by stretched exponential functions with exponent almost independent of chain 
extension. The imposition of fixed deformation at chain ends affects the orientational 
mobility of the chain down to the scale of individual bonds which may be observed from the 
biased evolution of time-dependent distribution functions for bond spatial reorientations. 

I. INTRODUCTION 

Previous theoretical considerations indicate that poly- 
mers with fixed ends are subject to distinct conformational 
statistics, depending on the degree of extension or pertur- 
bation of the chain.’ Similarly, the local reorientational 
and conformational dynamics of deformed chains is ex- 
pected to be altered due to the imposition of spatially con- 
strained ends. Examination of the distribution of confor- 
mational states and their time evolution in chains with 
fixed end-to-end separation r is expected to give some in- 
sights as to the intrinsic orientational characteristics of de- 
formed network chains. 

A potentially useful tool to study high-frequency mo- 
tions and associated dynamic properties in polymeric sys- 
tems is the Brownian dynamics (BD) simulation tech- 
nique.2 The time evolution of particles in BD method is 
described by coupled Langevin differential equations or al- 
ternatively stochastic difference equations which are shown 
to be equivalent to the Fokker-Planck description of par- 
ticle diffusion.3*4 Earliest studies using this technique 
adopted simple model chains such as one-dimensional 
bistable oscillators.576 Studies of more realistic moderate 
size chains with fixed bond lengths and bond angles were 
soon performed by Fixman using generalized coordi- 
nates,3’4 by Pear and Weiner,7,8 and Levy ef ~1.~ In the BD 
study of conformational transitions by Helfand, Wasser- 
man, and Weber,“.” bond stretching and bond-angle 
bending were incorporated as possible degrees of freedom 
in addition to bond torsional mobility. BD has thereafter 
proven to be a mathematically convenient method to treat 
several problems involving (i) static properties such as 
end-to-end distribution functions in various regimes, l2 sur- 
face adsorption,13 and collapse transition produced by 
modulating intermolecular interactions,14 and (ii) dy- 
namic phenomena such as relaxation of various correlation 
functions, transitions between rotational conformers,10”1*15 
chain diffusion,4,‘6 and cyclization. l7 Moreover, the time 

evolution of internal relaxational modes and dynamic light 
scattering functions has been recently investigated by the 
BD method,18 following the formalism introduced by Er- 
mak and McCammon” which considers the effect of fluc- 
tuating hydrodynamic interactions. 

In the present study, BD simulations are performed 
using the polyethylenelike model chain of Helfand, 
Wasserman, and Weber.“.” A similar mathematical for- 
malism has been recently adopted by Adolf and Ediger2’ to 
analyze the role of cooperativity in conformational transi- 
tions of polyisoprene. The ends of the chains investigated 
in the present study are held fixed in space, to mimic the 
state of deformed chains following the affine network 
model. The simulations are repeated for various end-to-end 
separations to assess the influence of chain extension (or 
compression) on the conformational and orientational be- 
havior of the chain. The paper is organized as follows. The 
model and the method are described in Sec. II. In Sec. III 
the BD trajectories of bond dihedral angles are displayed 
for chains of various extension and the rotational isomer- 
ization rates are estimated from hazard analysis. Static and 
dynamic correlations between bond orientations are ana- 
lyzed. The time evolution of probability distribution func- 
tions for bond dihedral angles and bond reorientation in 
space are obtained. In Sec. IV concluding remarks are pre- 
sented. 

II. MOLECULAR MODEL AND SIMULATION METHOD 

A. Model description 

A segment AB of N bonds in a laboratory-fixed coor- 
dinate system OXYZ is considered. The two ends A and B 
of the chain are held fixed in space throughout the BD 
simulation. For mathematical convenience the first atom is 
assumed to coincide with the origin of the frame OXYZ 
and the first bond lies along the X axis. The tetrahedrally 
attached second bond is in the plane XY and makes an 
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FIG. 1. Schematic representation of a chain of N bonds in a fixed refer- 
ence frame OXYZ. Atoms with indices 0, 1, 2, and N are fixed in space 
throughout the BD simulations of a chain of a given end-to-end separa- 
tion vector r. 

acute angle with the X axis, as shown in Fig. 1. Holding the 
direction of the first two bonds fixed in space corresponds 
to eliminating the three degrees of freedom associated with 
the absolute spatial reorientation of the chain. This device 
is inconsequential for the study of the internal conforma- 
tional and orientational dynamics of the chain which is of 
interest in the present study. The backbone atoms are in- 
dexed from 0 to N and their location with respect to the 
frame OXYZ are given by the position vectors rr 
= (Xhy;J;). ri may alternatively be viewed as the position 
vector of the ith united group forming the chain, in which 
the hydrogen atoms or other substituents are collapsed into 
the backbone atom. For simplicity, the ith backbone atom 
or group will be referred to as Ci. The position vector r’N of 
the terminal atom is equal to the end-to-end vector r of the 
chain. 

A short sequence of bonds between atoms C;_z and 
C;+2 is shown in Fig. 2. 1; is the bond vector connecting 
atoms i- 1  and i as 

l;=r;-r;-1 i= l,...,N. (1) 

The dot product of consecutive bond vectors defines the 
supplemental bond angle 8; as 

ei=COs-’ 
Ii+ 1’4  ( 1  li+ ‘li i= l,...,iV- 1, (2) 

'i+l 

ei- 

Ci m  'i+l 

Ii 
ci+2 

-----&, 
Ci-2 

FIG. 2. A portion of simulated chain between atoms Ci-s and Ci+s 
indicating the generalized coordinates l,, 19~ and 4,. I, with l<i(N is the 
bond vector between atoms C,-, and C, Bi is the supplemental bond angle 
at the ith atom and is defined in the range l<i<N- 1, 4, is the torsional 
angle of the bonds with indices 2(&N- 1. V= 5 vb(lj> + Ni’ Vdei> + Ni’ v#C#j>* 

i=l i=l i=2 
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where 1; is the magnitude of the vector 1, The torsional 
state of bond i is described by the dihedral angle (p; which 
is expressed in terms of bond vectors as 

+j=COS-’ - ( (liX1i-l) (Ii+ 1 X 1;) 
1 (liXli--1) I * 1 (li+lXli) I 1  ’ 

i=2,...,iV- 1. (3) 

The values of O”, 120”, and - 120” for 4; define the respec- 
tive rotational isometric states truns(t), gauche+ (g+), and 
gauche- (g- ) of bond i.’ 

The chain is subject to an intramolecular conforma- 
tional potential controlling the changes in the bond 
lengths, bond angles and bond torsions in conformity with 
the model chains of Helfand et al.” The bond stretching 
potential V,( l;) for bond i is given by the harmonic func- 
tion 

V~(lj)=(kjJ2)(lj-10)2, i= l,...,N, (4) 

where kb is the bond-stretching force constant, and 1, is the 
most probable bond length. Similarly, V&8;) is the bond- 
angle bending potential which constrains the supplemental 
bond angle ei to fluctuate about 0, according to 

Vo( 0;) = (kd2) (cos 0;-cos eo)2, i= l,...,N- 1. (5) 

Here k. is the bond-angle bending force constant. The tor- 
sional motion of bond i is governed by the rotational po- 
tential V~( ~;) 

5 

V#(+i) =k+ C a, COS”+t i=2,...,N- 1 (6) 
n=O 

leading to three isomeric minima at the t and g’ states. 
Here k+ is the bond torsion constant and the coefficients 
ai(O(i<5) satisfy the relationship, 

(7) 

with a0 equal to unity. It is clear from Eq. (6) that bonds 
are subject to independent rotational potentials which 
leads to the expression 

N-l 

~4(42,4h--1)= ig2 Q(h) (8) 

for the rotational potential energy of the chain. Clearly, 
this approximation is not applicable to chains in which the 
rotational state of a given bond is strongly coupled to that 
of its close neighbors. In the case of pairwise interdepen- 
dent bonds which is commonly adopted in chain statistics, 
the potential given by Eq. (6) should be modified as a 
function of two consecutive bond dihedral angles. 

The total conformational potential I’ of the chain is 
given by the additive contribution of aforementioned three 
interactions as 

(9) 
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6. Brownian dynamics method TABLE I. Conformational energy parameters. 

For a chain of N+ 1 atoms each of equal mass m, the 
Brownian motion of the ith atom is given by the Langevin 
equation 

d2ri dri 
m ;i;z= -{x-ViV+mAi(t) (10) 

which, in the high-friction limit, reduces to the equation of 
motion 

k/m (IIS-‘) 
W/m (J/kg) 
kdm (J/W 
a0 
=I 
a2 
a3 
=4 
a5 

2.5~ IO9 
1.3 x 10’ 
6.634x IO5 
1.0 
1.3108 

- 1.4135 
-0.3358 

2.8271 
-3.3885 

dri 
p;i;=-m-‘ViV+Ai(t). (11) 

In Eqs. (10) and (ll), 6 is the friction coefficient, p is 
defined as the ratio c/m, Vi is the gradient operator indi- 
cating the partial derivative with respect to the position 
vector ri, and Ai( t) is the Gaussianly distributed stochastic 
force per unit mass with zero mean and covariance matrix 

formed with fi= 1.0X 105/ns for T=400 K, in general. A 
few runs were repeated for 300 K to estimate the effect of 
temperature change. 

(Ai(t)Ai(t’))=(2pkBT/m)S,$(t-t’)l,. (12) 
Here kB is the Boltzmann constant, T is the absolute tem- 
perature, and 1, is the identity matrix of order 3. Explicit 
expressions for the stretching, bending and torsional forces 
resulting from the negative gradient of the potential V are 
given in the Appendix. 

In the present model the hydrodynamic interactions 
between carbon centers transmitted by the surrounding 
medium and the intermolecular interactions between non- 
bonded chain units leading to excluded volume effect have 
not been included. The contribution of these interactions to 
the rapid conformational relaxation processes in polymeric 
chains presently investigated is expected to be negligibly 
small. 

The Brownian dynamics simulation is performed by 
the numerical integration of the 3 (N+ 1) equations of mo- 
tion given by Eq. ( 11) for each atom constituting the 
chain. The previously described2’ stochastic extension of 
the Runge Kutta method is adopted for that purpose and 
the second-order approximation is used. The integration 
time step is taken as St = 0.5 fs in conformity with previous 
work.” Thus, the simulated stochastic process is discrete 
and Markovian in the sense that the trajectories of particles 
are generated only at discrete time steps 0, St, 2St, etc., and 
the state of the system at a given time t+St is completely 
determined by its state at time t. 

Initially, bond lengths and angles were assumed to be 
at their equilibrium values and bond torsional angles were 
assigned by the Monte Carlo technique based on the con- 
ventional rotational isomeric state’ approach. Accordingly, 
a priori probabilities of rotameric states t, g+, and g- were 
estimated from the aforementioned rotational potential 
and bonds are assigned isomeric states in conformity with 
those probabilities. Simulations were repeated for four 
chains with distinct end-to-end separations listed in Table 
II. The total duration of simulations t,- for each run are 
given in the third column. A given run required a CPU 
time of about 10-12 h on an SGI/35 Personal Iris. The 
end-to-end vector of each chain was held fixed by artifi- 
cially freezing the two terminal atoms. This mathematical 
device permits to simulate a chain between two securely 
embedded junction points A and B in a deformed network, 
which undergoes restricted motions to the extent of rigidity 
imposed by its extension. The degree of extension of each 
chain is characterized by the ratio ;1= r/( 2)A’2 of its end- 
to-end distance r to the unperturbed chain length. Com- 
pared to the dimensions of unperturbed polyethylene 
chains, in which r= (?)A’2~2.6 nm for n=49 (using the 
characteristic ratio’ C,~6.0 in (?),=C,nl$, the simu- 
lated chains III and IV with respective end-to-end dis- 
tances 3.62 and 5.23 nm have relatively expanded config- 
urations, while the chain I with r=0.97 nm is highly 
contracted. The dimensions of the chain II with end-to-end 
distance r=2.39 nm approximate those of unperturbed 
polyethylene (PE) polymers. 

C. Simulation parameters 

Simulations are carried out for polymeric chains of 49 
bonds using the set of energy parameters listed in Table I. 
The parameters for torsional parameters are proposed by 
Ryckaert and Bellemans as a representative of a hydro- 
carbon chain. The force constants for bending and bond 
stretching were proposed by Helfand et al. ” as a reason- 
able compromise between realistic estimates leading to too 
fast oscillations and softer potentials allowing for larger 
time steps of integration. The mass m of chain atoms was 
taken as 0.014 kg/mol, corresponding to methylene repeat 
units. Similarly, the equilibrium values lo= 1.53 b; and 0, 
= 70.53” of alkane chains were used. Simulations were per- 

III. ANALYSIS OF THE TRAJECTORIES 

A. Trajectories and equilibrium distribution of bond 
dihedral angles 

For illustrative purposes, the changes in the dihedral 
angles of the central bonds in the chains I, II, and IV 

TABLE II. Simulation data and results. 

Run A tf (ns) PI As Cm-‘) 

I 0.37 12.0 0.593 5.60 
II 0.91 13.5 0.603 5.40 
III 1.38 12.5 0.642 4.58 
IV 2.00 13.5 0.777 2.76 
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FIG. 3. Example trajectories of 1.2 ns for dihedral angles I$~ of the central 
bonds in chains of various extensions, I, II, and IV with A=O.37, 0.91, 
and 2.00, respectively, at 400 K. 

during a BD simulation period of 1.2 ns are displayed in 
Fig. 3. The preference for rotational angles centered within 
f 30’ fluctuations about the isomeric states t, g+, and g- is 
clearly apparent from those trajectories. It is noted that the 
more contracted chain exhibits steady transitions between 
rotamers while the highly strained chain with the largest il 
is subject to fast oscillatory motions and, in particular, 
rapid back transitions restoring the bond torsional angle to 
the fruns state, whenever the gauche* state is visited. 

The normalized probability distributions of dihedral 
angles for the chains of various extensions are displayed in 
Figs. 4(a)-4(d). The distributions were obtained by con- 
sidering dihedral angle intervals of 20”. The weak asymme- 
tries of Figs. 4 indicate the statistical error bounds of the 
BD simulations. An increased preference for the tram state 
with increasing chain extension is observed. From the in- 
tegration of the probability distribution curves in the 
ranges -60”<&60” and 60% 14, I<180”, the equilibrium 
probabilities oft and g* states, respectively, are estimated. 
The results are listed in the fourth column of Table II. It is 
interesting to note from the tabulated equilibrium proba- 
bilities pI of the tram state or from the curves in Figs. 
4(a)-4(d) that the equilibrium distribution of rotational 
states is more sensitive to chain extension in the case of 
more stretched chains (with higher /2). The contracted 
chain, on the other hand, exhibits a distribution of dihedral 

0.31 ‘1 8 1.1 r II, 8 .““,‘I ‘I 

l./(A\/&l 

$Jy-zFJ~i 

-180 -120 -60 0 60 120 180 -120 -60 0 60 120 180 

FIG. 4. Equilibrium probability distribution P( 4,) of dihedral angles $i of 
internal bonds (5<i(N-5) for chains with (a) A=0.37, (b) A=O.91, 
(c) A=1.38, ad (d) A=2.00. 

angles that closely approximates that of the unperturbed 
chain. 

B. Rotational isomerization rates 

For the estimation of the rotational isomerization rates 
in the chains with different extensions, the hazard plots 
shown in Figs. 5 (a) and 5 (b) were drawn. The cumulative 
hazard N(t) in the ordinate of Figs. 5 are obtained from 
the set of first passage times from one rotational isomeric 
minimum to another, by following the procedure previ- 
ously outlined.6 Accordingly, the first passage times are 
organized in ascending order and the hazard rate h( 7i) 
corresponding to the ith element 7i of the set of first pas- 
sage times is assigned the value h (7i) = i/( n -i), where n is 
the total number of first passages. The cumulative hazard 
H(t) results from the summation of the hazard rates h ( ri) 
in the range O<Ti<te 

The asymptotic slope il of the cumulative hazard is a 
measure of the transition rate for each chain. The slope ;1 
is related to the rate of transition A2, from tram to one of 
the gauche states and to the reverse rate ;t, by 

A=~P&~,+~P$,,=~P&~, (13) 
where the second equality follows from the principle of 
detailed balance. The isomerization rates 1, resulting from 
the least-squares fits of the plots for the four chains in Fig. 
5 (a) are listed in the fifth column of Table II. The isomer- 
ization rates decrease with chain extension. 

In particular, it is noted from Fig. 5 (a) that the most 
stretched chain (IV) exhibits distinctly lower slope /2 in- 
dicative of a slower transition rate compared to the other 
three chains. At first glance, this feature appears contra- 
dictory to the trajectories displayed in Fig. 3. A closer 
examination reveals, however, that on a short-time scale 
this chain is, in fact, the one which exhibits the highest 
mobility as illustrated in Fig. 5(b). This figure which rep- 
resents nothing else than the short-time portion of Fig. 
5(a) clearly demonstrates the enhanced tendency of the 
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FIG. 5. (a) Time dependence of cumulative hazards H(t) for the simu- 
lated chains of various end-to-end separation. The lowest curve obtained 
for L=2.00 shows the low effective rate of isomerixation of the most 
strained chain. (b) Short-time region of the hazard plot displayed in (a) 
indicating the enhanced tendency of the bonds in the most stretched chain 
to undergo back transitions to their original rotameric state. 

chain IV to undergo high-frequency motions at short-time 
scales. The majority of those motions are, however, in the 
form of reverse transitions forcing the bond back to its 
original state and do not effectively contribute to the con- 
formational relaxation of the chain. The effective rate of 
isomerization is portrayed by the long-time asymptotic 
slope of the cumulative hazards and is relatively low, as 
would be expected for a chain with considerably reduced 
degree of freedom. 

C. Equilibrium correlations between bond 
orientations 

The equilibrium correlation between the orientations 
of bonds i and j along the chain is expressed by the order 
parameter or orientation function S 

S=f[3(lUi*ttlj)2- l] =i(3(COS2CZ) - l), (14) 
where mi and mj are the unit vectors along the two bond 
vectors li and $, and a is the angle between them. The 
angular brackets in Eq. ( 14) indicate both the time average 

0.6 

-0.4 
0 4 a 12 16 

i-i 

FIG. 6. Static orientational cross-correlation function .S=f[3(m;mJ2 
- I] between bonds i and j as a function of the number j- i of intervening 
bonds, for the four chains with the indicated extensions, at 400 K. A 
strong even-odd effect enhanced by chain extension is observed. 

for the pair of bonds i and j and the ensemble average over 
pairs of bonds with the fixed number j-i of intervening 
bonds. Figure 6 displays the decay of orientational cross 
correlations with an increasing number of intervening 
bonds for the four chains of different extensions. A sharp 
even-odd effect which persists over a large number j- i of 
intervening bonds is observed in the case of stretched 
chains. Strongest orientational correlations, positive or 
negative, occur in the case of the most strained chain (IV) 
as expected. It is interesting to note, on the other hand, 
that the orientational behavior of the contracted chain (I) 
closely resembles that of the unperturbed chain (II) and 
the orientational correlations between bonds vanish at 
about j-i=5, in those chains. 

The influence of temperature on the degree of bond 
orientational correlations is illustrated in Fig. 7 where 
chain II is taken up. It is observed that the orientational 
correlations which vanish at about j-i= 6 at 400 K are 

0.4 - 

I 
4 a 12 16 

i-1 

FIG. 7. Decrease in S with increasing temperature. Results are presented 
for the example chain II at the two simulation temperatures 300 and 
400 K. 
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FIG. 8. Change in equilibrium orientational correlations S  between pairs 
of bonds with increase in their separation d. The orientational correlation 
length does not extend beyond 0.5 nm except for the highly strained 
chain. 

maintained until j- 1 > 10 with the decrease in temperature 
to 300 K. 

An estimation of the orientational correlation distance 
between neighboring bonds may be performed by examin- 
ing the change in the orientational cross-correlation func- 
tion S with the distance separating the studied bonds. Fig- 
ure 8 displays the variation of S with d, where d is taken as 
the distance between the midpoints of the bonds. Results 
reported in Fig. 8 are obtained by computing the average S 
values corresponding to intervals Ad of 0.025 nm. The 
curves exhibit oscillations which gradually level off with 
increasing d to the asymptotic values dictated by the par- 
ticular chain extension. The lowest starting point reflects 
the almost tetrahedral bond angle between successive 
bonds and is not affected by chain extension. The effect of 
chain extension is distinguishable at longer separations. 
Strongest orientational correlations occur in the most 
stretched chain. The unperturbed chain exhibits the same 
behavior as the contracted chain I and is not explicitly 
displayed for clarity. The relative heights of the curves are 
in conformity with the ordering of their end-to-end sepa- 
ration. This dependence of S on d is characterized in all 
cases by a maximum correlation at a separation of about 
0.12 nm, followed by a minimum at about 0.20 nm. Be- 
yond 0.5 nm approximately, orientational correlations be- 
tween bonds become negligibly small unless the chain is 
highly strained. 

D. Time decay of bond-orientational autocorrelations 

The first and second orientational autocorrelation 
functions (OACF) for a given bond i along the chain are 
given by the respective expressions 

Ml(t)=(mi(0)emi(t)) (15) 
and 

M2(f)=f(3[m~(0)qmi(t)]2- 1). 
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FIG. 9. Time decay of the first orientational autocorrelation function 
M,(t) for internal bonds of simulated chains subject to indicated A  values. 
Deviations between curves arise mostly from differences between the equi- 
librium values asymptotically approached. 

Here m,(O) and mi( t) represent the unit vectors associated 
with the initial and final states of the investigated bond 
vector. M,(t) is related to dielectric relaxation process, 
whereas M*(t) is observed in fluorescence anisotropy, 
NMR, and ESR experiments. In analogy to Eq. ( 14), the 
averages in Eqs. ( 15) and ( 16) are performed by taking 
both the ensemble and the time averages as 

n-k 
M,(t)=At(n-22k)-‘(ff-f)-’ C C mi(sAt) 

i=k s 

*mi(sAt+t). (17) 
A similar expression applies to M2( t) . The first summation 
includes all bonds devoid of end effects. The value k= 10 is 
safely used. The second summation is performed over dis- 
crete initial times sht with spacing At. s is varied from 0 to 
( tf--t)/At for a total simulation duration of t,-, and At is 
chosen as 5000 fs. It is noted that the use of mj(sAt) in- 
stead of m,(sAt+ t) in Eq. ( 17) yields at t=O the equilib- 
rium property (cos a). Similarly, M,(t) reduces to S upon 
substitution of t=O and j#i. 

The time decay of the first OACF Mi (t) is displayed 
in Fig. 9. The initial decay rates are comparable in the 
chains with different extensions but the curves gradually 
separate as the equilibrium values are asymptotically ap- 
proached. The distinction between the respective chains 
are even weaker if the second OACF M2 (t) is considered, 
as illustrated in Fig. 10. A measure of the dynamics of the 
chain excluding the effect of equilibrium constraints is the 
normalized OACF’s: 

i= 1,2. (18) 

(16) 

The time decay of the normalized first OACF is displayed 
in Fig. 11. It is clearly seen that bond reorientation is 
fastest in the most stretched chain indicating the occur- 
rence of fast large amplitude motions on a localized scale. 
As far as the overall chain is concerned, on the other hand, 
the asymptotic high value of Ml (t) at long times in Fig, 9 
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FIG. 10. Time decay of the second orientational autocorrelation function 
M2 (t) for internal bonds of simulated chains subject to indicated L values. 

shows that the ultimate orientational relaxation is consid- 
erably limited. This is a natural consequence of the impo- 
sition of an uniaxial tension holding the chain ends far 
above their unperturbed separation. Figure 11 shows that 
the bond reorientation is slowed down in the case of less 
extended chains. 

Stretched exponential functions of the form23 

Mi( t) = exp{ - f/ri)8} (19) 

with O@c 1 has been used in literature to approximate the 
time decay of correlation functions. 7i is the characteristic 
time for the specific relaxation process expressed by Mi( t) . 
Equation ( 19) may be rewritten as 

lOg[ -InM~(t)]==~lOg t--plOgTi (20) 

which permits an easier graphical analysis of the results. 
Plots of log[-In M,(t)] vs log t are presented in Figs. 12 
and 13 for i= 1 and 2, respectively. The analysis is mostly 
significant in the intermediate to long-time range inasmuch 
as a single exponential decay of correlation functions is 

0.8 

E: 0.6 

i 
0.4 

0.0 
0.0 0.1 0.2 0.3 0.4 
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FIG. 11. Time dependence of normalized first OACF M,(t),,, which is FIG. 13. Comparison of the time dependence of M2( t) with the stretched 
a measure of local chain dynamics excluding equilibrium contributions. exponential form. Exponents 8=0.55 =eO.O4 are obtained from the best- 
The loss of orientation of bonds occurs the fastest in the most strained fitting lines. The characteristic times and exponents for the four runs are 
chain and decreases gradually with decreasing end-to-end separation. listed in Table III. 

Haliloglu, Bahar, and Erman: Deformed polymer chains 

-1.9 -1.6 -1.3 -1.0 -0.7 

log t 

FIG. 12. Comparison of the time dependence of M, (t) with the stretched 
exponential form according to Eq. (20). Best-fitting lines yield exponents 
fi=O.46*0.03 and the characteristic times listed in Table III. 

operative in the two limits as t approaches zero or infinity. 
That the OACF’s may be fairly well represented by 
stretched exponentials is seen from the approximately 
straight lines resulting from BD simulations. The expo- 
nents calculated from the slopes of the curves in Fig. 12 
vary in the range 0.46*0.03, smoothly increasing with 
chain extension. An exponent of p=O.55 ItO. is ob- 
tained, on the other hand, from the best fitting lines in Fig. 
13. The dependence on chain extension is mostly mani- 
fested by the vertical shifting of the curves which is directly 
related to the characteristic time ri. It is noted that the 
characteristic times ri associated with the first OACF ex- 
hibit a definite dependence on chain extension, whereas 
those corresponding to M,(t) are relatively insensitive. Ta- 
ble III gives a summary of the exponents and characteristic 
times resulting from the BD trajectories of the four chains. 
A ratio of r1/r2 of about 4 is obtained for the unperturbed 
chain. This ratio is found to decrease with increasing chain 
extension. Correlation times for the decay of M,(t) and 

-2.10 -1.85 -1.60 

logt 
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TABLE III. Stretched exponential parameters for bond OACF’s. 

M,(t) M,(t) 

Run A r2 b) B r2 (ns) B 
I 0.31 0.178 0.453 0.030 0.586 
II 0.91 0.137 0.479 0.030 0.578 
111 1.38 0.087 0.454 0.027 0.554 
IV 2.00 0.026 0.477 0.020 0.523 

M,(t) may alternatively be estimated from the times cor- 
responding to l/e of their full relaxation. The correlation 
times obtained by this method exhibit the same dependence 
on chain extension. The ratio rr/rz is found to decrease 
linearly with chain extension, irrespective of the method of 
estimation of characteristic or correlation times, as illus- 
trated in Fig. 14. 

E. Distribution of bond rotation and reorientation 
angles 

Following the approach adopted by Takeuchi and 
Roe24t25 for a detailed description of the time evolution of 
relaxational processes in polymers, time-dependent distri- 
bution functions is considered in the following. The evolu- 
tion of bond torsional motions is described by the proba- 
bility distribution function P( 1 A# 1 ,At) associated with 
the absolute changes in dihedral angles 1 A+ 1 occurring 
within the time interval At. Similarly, P( Aa,At) represents 
the probability that a given bond undergoes a spatial reori- 
entation of angle ha during a time span At. 

Figures 15 (a) -15 (d) display the distribution functions 
P( I A4 I ,At) of bond torsional motions obtained for the 
four chains of various extensions. The il values correspond- 
ing to each of the labels (a)-(d) in Fig. 15 is indicated. 
The curves are drawn for At= 0.005,0.060, and 1.765 ns in 
each case. The distribution functions are not normalized 
but resealed such that P( I A4 I =o”, At) = 1 for each of the 
chosen At values. Initially, the distribution function 
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G 
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a 

FIG. 14. Dependence of the ratio T,/T~ on chain extension. r, and r2 are 
obtained both from (i) the best fitting stretched exponentials (solid cir- 
cles) and (ii) the l/e points of full decays of OACF’s (open circles). 
Linear decrease of 7,/r2 with chain extension is observed irrespective of 
the method of approach. 
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FIG. 15. Distribution function P( 1 A+ 1 ,Ar) of absolute changes in dihe- 
dral angles within respective time intervals At of 0.005,0.06, and 1.765 ns, 
for (a) 1=0.37, (b) 1=0.91, (c) A=1.38, and (d) 1=2.00. The distri- 
bution functions are resealed such that P( 1 A4 1 ,At) = 1 at 1 Ad 1 =o”. 

P( I A$ I ,At) is a dirac function with the pike at ) A$ I =O. 
With increase in the elapsed time the distribution is ex- 
pected to broaden towards larger (A4 ( values. However, 
the broadening does not occur in a Gaussian form but 
instead a second peak centered about 1 A$ I = 110” appears 
which is indicative of the probable transition to another 
rotational isomeric state. In fact, the change in the tor- 
sional angle exactly reflects the rotational difference be- 
tween the fruns and gauche states of either sign in PE 
chains. At long times the equilibrium distribution of dihe- 
dral angles is gradually approached as revealed from the 
comparison of the uppermost curves in Figs. 15 (a)-1 5 (d) 
with those of Figs. 4(a)-4(d). 

Figures 16(a)-16(d) display the evolution of bond re- 
orientation in space. The distribution curves P( Aa,At) are 
obtained from the angular displacement ha of bond vec- 
tors in space, by considering the same bond during two 
successive times with a delay of At. Curves are drawn for 

FIG. 16. Normalized probability distribution P(Aa,At) for the reorien- 
tation of bond vectors by an angle ha within the time intervals of At 
=O.Ol,O.ll, and 2.31 nsfor (a) /2=0.37, (b) A=O.91, (c) A=1.38, and 
(d) /2=2.(X 
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At=O.Ol, 0.11, and 2.31 ns. For an unbiased distribution 
of spatial reorientation the distribution curves should 
evolve from a dirac function at At=0 to the functional 
form f sin Aa at long times. This is not the case as the 
chains are subject to fixed end-to-end separations that cer- 
tainly constrain bond spatial reorientations. The unper- 
turbed chain and the compressed chain obey comparable 
dynamics and approach the equilibrium distribution 
f sin Aa at long times, which is indicated by the dotted 
curve in parts Figs. 16(a) and 16(b). The bonds in the 
stretched chains, however, exhibit smaller ha values on 
the average, decreasing with chain extension. This clearly 
demonstrates the influence of the deformation of chain 
ends on the orientational mobility of the chain even at the 
scale of individual bonds. 

to a ratio of about l-l.5 which follows from the discrete 
120” amplitude jumps inherently present in that approach. 

The exponents P which satisfactorily reproduce the 
time decay M,(t) and M2( t) are found to assume the val- 
ues 0.46AO.03 and 0.55 =!=0.04, respectively. For polyiso- 
prene, recent BD simulations lead to p~O.6 for M,(t) 
while p-0.4 for M,(t) as measured in dielectric experi- 
ments and interpreted theoretically.28 It is interesting to 
note that the exponents in the two different chains, poly- 
ethylene and polyisoprene, show comparable qualitative 
and quantitative dependence on the type of orientational 
autocorrelation function considered. 

IV. CONCLUDING REMARKS 

In the present study, the BD simulation method has 
been employed for a systematic analysis of chain extension 
on the conformational and orientational dynamics of poly- 
mer chains. The picture of spatially frozen chain ends is 
conveyed by the classical model of network chains in 
which the junctions deform affinely with the macroscopic 
strain. A more realistic model would consider a distribu- 
tion of end-to-end separations in the deformed state and 
the possible fluctuations of the constrained domains. Re- 
striction of the analysis to fixed chain ends is a mathemat- 
ical simplicity which is adopted for computational effi- 
ciency. 

The hazard analysis of BD trajectories demonstrates 
that with increasing extension the effective isomerization 
rates decrease. The highly strained chain undergoes rapid 
rotational jumps although those are mostly in the form of 
back transitions forcing the bonds back to their original 
states and, hence, not contributing effectively to the con- 
formational relaxation of the chain. Examination of the 
equilibrium correlations between bonds within the four 
chains of different extensions reveals the strong even-odd 
effect dominating the static cross correlations, in agree- 
ment with previous work.26 The correlation length is about 
0.5 nm in the unperturbed or weakly perturbed state but is 
larger in the highly stretched chain. 

Time-dependent probability distribution functions de- 
scribing the evolution of rotational and reorientational mo- 
tions of the bonds indicate that the amplitudes of rotational 
motions are not affected by chain extension but their oc- 
currence is reduced. Thus the location of the second peak 
in the distribution functions of Fig. 15 remains unchanged 
at about Ac$= 112” when increasing deformation but its 
height is reduced. The amplitudes of bond reorientational 
motions, on the other hand, are significantly diminished 
upon stretching of the chain as observed from the shift of 
the maxima in Fig. 16 to lower values with increasing 
chain extension. Thus, the long-time peak shifts from 90” 
for the unperturbed chain, to less than 60” for the highly 
strained chain. 

The position vector ri of the ith atom is a function of 
the generalized coordinates Ii, Zi+i, 6i-1, 8, 6i+i, 4i-1, 4i, 
(Pi+19 and $1+2, as follows from the examination of Eqs. 
( 1 )-( 3). Thus, the gradient of the overall potential V with 
respect to ri may be written as 

APPENDIX 

I if1 i+l 

viv=Vi C v6(zk)+ C V,9(ek) t k=i k=i-1 

(Al) 

Dynamic orientational autocorrelations of bonds are 
described by the functions M,(t) and M,(t) differing in 
correlation times by a factor of about 4 in the case of 
unperturbed chains. This factor is found to decrease lin- 
early with increasing end-to-end separation. Recent MD 
simulations of n alkanes in the bulk state by Takeuchi and 
Roe24 yield a value of about 3 for the ratio 7,/r2 of the 
correlation times associated with M,(t) and M2( t) for 
bond reorientation. The small difference between the 
present results and those from MD simulations may be 
attributed to the influence of intermolecular constraints 
which are not presently considered. In fact, with increasing 
constraints at the chain ends, i.e., with increasing r, the 
ratio r1/r2 is found to decrease linearly and approaches 
almost unity (indicative of large jump motions) in the 
highly strained chain. Previous analytical treatment based 
on the dynamic rotational isomeric states formalism leads2’ 

It should be noted that in Eq. (Al), and in the following 
equations, the potential or the force having an undefined 
generalized coordinate as the argument [such as V,(C~,) 
with k < 1 or k>N] is implicitly accepted to be equal to 
zero. Replacing in Eq. (Al ) the negative gradients of the 
potential functions Vs (with c=b, 19, or 4) by the forces FC 
and inserting the results into the equation of motion ( 11)) 
leads to 

i+l i+l 

Wr/dt=m-’ kzi Fdlk) + k=Tm, b&w 

i+2 

+ kEFwl F+(dk) +4(t)* 
1 

t.42) 

The bond stretching forces Fb( Zi) and F~( Zi+ i ) which are 
associated with the deformation of the lengths of bonds i 
and i+ 1 are given by 
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for the displacement of atom atoms i in the range 1 <i<N, 
and by 

Fb(Zi+l)=kb(l-Zo/Zi+l)li+l (A4) 

for l<i<N- 1. On the other hand, the bond-bending 
forces on atom i arising from the distortions of the angles 
8 i-1, 8b and Bi+t are given, respectively, by 

FB(ei-,)=-KBi_,(Zi-*-di_IZi/Z~), 2(&N (-45) 

FB(0i)=-K~~[Zi+I-Zi+d:“(Z,+,/Z~+,-Zi/Z~)], 

and 

2<i<N- 1 (A61 

Fe(fJi+l)=Kei+,(4+2 -diz:li+1/Zf+t), 2(i<N-2. 
(A7) 

Here Ke, and d; are defined as 

Ke, = ke 
(cos em-cos e,) 

un+ 1 
(A81 

and 

d;+,& (.49) 

In order to write the rotational potential forces 
F.+($J~), i- 1 <m<i+2, in a more concise form, the follow- 
ing variables are introduced: 

a;= [GZi- (d$)2], (AlO) 

A,(ij,k)=(djli-Z~li)(d~Z~-ddjkdj)(aj)-’ 

$ (zjlk-d,“lj), (All) 

A2(iJ,k) = (d~~-Z~li>(~~~-~d:)(aj)-’ 

+ (l&l@+ (A121 

Using those variables, the bond rotational forces read as 

F~(~i-*)=K~i_,A1(i,i-l,i-22), 3<i<N (Al3) 

Fd(&) =K+[A2(i,i- 1,if 1) --Al(i+ l,i,i- 1) 

+A2(i,i+ l,i- l)], 3<i<N- 1 (Al4) 

and 

+A#+ l,i+2,i)], 3(&N--2 (A15) 

F~(~i+2)=--K~i+*~l(i+l,i+2,i+3), 3<i<N-3 
(A161 

where the proportionality constant Kb is &fined as m 

iaicos 

(A17) 
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