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ABSTRACT Orientational autocorrelations and cross-correlations are considered for vectors rigidly affixed 
to bonds subject to configurational transitions in a long polymer chain. Transitions of bonds from one 
rotational isomeric state to the other are assumed to be dependent on the state of the neighboring bonds. 
Bond transition rates are obtained from Kramers' expression in the high-friction limit. The friction coefficient 
affecting a transition is assumed to depend on the location of the bond along the moving sequence in the 
chain, The joint probability of having a sequence of bonds in one configuration at time zero and in another 
at time z and the orientational correlation functions are obtained by an efficient matrix multiplication scheme 
analogous to the matrix generator formalism of the rotational isomeric theory of chain statistics. A sequence 
of bonds whose length is prescribed by the time window of the experimental technique used is defined as 
an independent kinetic unit. The stochastic behavior of the latter is assumed to be uncorrelated with the 
remaining parta of the chain. Calculations are performed for different lengths of independent units, ranging 
from a few skeletal bonds to segments of the size of a Rouse subchain. Frequency distribution of relaxational 
modes obtained in this manner agree closely with previous calculations of Fixman by Langevin dynamics. 
Thus, unlike the Rouse dynamics predictions, the fastest modes of the investigated sub-Rouse regime scale 
linearly with inverse chain length and the distribution of relaxational frequencies for a given sequence exhibits 
a pronounced plateau. 

1. Introduction 

The description of the motions of a long chain in terms 
of N stochastically independent Gaussian segments con- 
stitutes the basis of the bead-and-spring model of chain 
dynamics. According to this model, the chains are 
conveniently represented by a succession of ( N  + 1) beads 
joined together by Hookean springs subject to entropi- 
cally driven elastic forces. In the original version intro- 
duced by Rouse,l the hydrodynamic interaction is disre- 
garded; the time evolution of the position of the beads 
obeys the linearized Langevin equation, a stochastic 
differential equation accounting for (i) the harmonic 
interaction potential between consecutive beads along the 
chain and (ii) the random motion of the beads charac- 
teristic of Brownian particles. This model has been widely 
used for analyzing low-frequency motions of polymers. In 
particular, it has proved to satisfactorily describe the vis- 
coelastic behavior of polymer melts and semidilute solu- 
tions where the hydrodynamic interactions are effectively 
screened out. In the presence of hydrodynamic interac- 
tions, such as in the case of dilute solutions, it is rather 
replaced by its improved version, the Zimm model.2 The 
mathematical foundations of the Rouse-Zimm model and 
their generalizations may be found in the works of Bixon? 
Zwanzig,' and Doi and Edwards.6 

Although the concept of "stochastically uncorrelated 
Gaussian subchains" of the bead-and-spring model has 
lead to considerable progress in our understanding of chain 
dynamics, it suffers from the usual limitations of any 
mathematical model of wide generality. In fact, in the 
case of processes where the chemical structure and the 
detailed conformational characteristics of the materials 

become important, the Rouse-Zimm model is no longer 
applicable. In the extreme situation where the behavior 
is exclusively dominated by such short-range effects, 
recourse to models faithful to real chain characteristics a t  
the repeat unit level becomes obligatory. In this small- 
wavelength limit, the few bonds involved in the local 
dynamics constitute a sequence much shorter than the 
stochastically independent Rouse subchain. All postulates 
of the Rouse-Zimm model fail in this limit. For a realistic 
estimation of the rates and mechanisms of such small- 
wavelength motions associated with rotameric transitions 
of backbone bonds, a plausible approach is the adoption 
of the fundamental postulates and approximations of the 
rotational isomeric state (RIS) model. The dynamic 
rotational isomeric state (DRIS) approach,8J developed 
along these lines, is applicable to high-frequency motions 
involving a few skeletal bonds undergoing rotameric 
transition, as illustrated by its recent application8to NMR 
relaxation measurements in dilute polymeric solutions. 

The time scale of the molecular motions involved in 
NMR relaxation processes lies approximately in the range 
10-11-10-10 s, while Rouselike motions typically encoun- 
tered in viscoelastic measurements, dielectric relaxation 
experiments, etc. are slower by about 2 or 3 orders of 
magnitude. In addition to their distinct time scale, high- 
frequency and low-frequency motions are distinguished 
by their qualitative dependence on the size of the moving 
segment. In fact, in Rouse dynamics, in which a diffusion- 
controlled regime prevails, the relaxation times scale as 
W ,  where M is the polymer molecular weight, whereas 
high-frequency or small-wavelength motions are inde- 
pendent of the size of the molecule inasmuch as they are 
highly localized along the chain: they are mainly governed 
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by short-range conformational energetics. It can even be 
shown that with decreasing size of the moving unit, the 
diminishing frictional effect may be more than counter- 
balanced by the opposite "internal viscosity" effect, first 
pointed out by K ~ h n , ~  which is manifested by a progressive 
reduction in mobility accompanying the smaller number 
of degrees of freedom (or fewer pathways to relaxation).loJ1 

On the other hand, a large number of experiments such 
as neutron scattering, fluorescence anisotropy decay, and 
cyclization dynamics explore the intermediate frequency 
range, involving the cooperative motion of a group of 
skeletal bonds, forming a segment not large enough to be 
considered as a Gaussian subchain exhibiting Rouselike 
dynamics but, a t  the same time, comprising a definitely 
sufficient number of mobile bonds to experience sub- 
stantial frictional resistance constraining the motion. It is 
that intermediate frequency domain that will be the object 
of the present study. A weaker dependence on the size of 
the kinetic unit, compared to Rouselike dynamics, is 
expected to take place in that intermediate regime. Indeed, 
the Langevin dynamics simulations of constrained chain 
stochastics carried out some time ago byFixman12J3 clearly 
demonstrate the differences between the Rouse modes 
and those high-frequency motions that belong to what 
will be referred to as the sub-Rouse regime in the following. 
In fact, through introduction of hindered rotational 
barriers, the terminal mode relaxation rates exhibit a linear 
dependence on chain length, as shown by Fixman. 

We note that the intermediate regime dynamics has 
been investigated by Allegra and collaborators as 
in their interpretation of quasi-elastic neutron scattering 
experiments. Although the classical linear Langevin 
equation with the Fourier representation of dynamical 
modes is used in their study, in parallel with the Rouse- 
Zimm model, they depart in their definition of intramo- 
lecular elasticity. The latter is accounted for through 
adoption of realistic quadratic approximations for the 
potential between all pairs of atoms instead of the ends 
of the Gaussian subchains of the Rouse-Zimm model. 
Accordingly, molecular structural and conformational 
characteristics predicted by the RIS scheme are utilized 
for both (i) the evaluation of the generalized characteristic 
ratio determining the elastic contribution to motion and 
(ii) the estimation of the effect of internal viscosity 
associated with energy barriers to bond isomeric rotations. 
Inasmuch as the specific chain properties are considered, 
the theory is particularly suitable to correct or complement 
the higher frequency modes of Rouselike dynamics and 
has proved to satisfactorily explain the intermediate- 
wavelength motions involved in neutron scattering ex- 
periments.16J7 

In the following, an alternate approach is proposed for 
the exploration of the intermediate regime dynamics. The 
study is essentially motivated by the simulations of Fix- 
man12J3 where the intermediate regime dynamics are 
investigated. Specifically, we address the validity of 
extending the DRIS calculations into the intermediate 
range of frequencies. The DRIS model, originally devel- 
oped for highly localized motions and hence emphasizing 
the role of short-range intramolecular conformational 
potential, assigns a mean frictional resistance to motion 
regardless of the size of the connected moving units 
accompanying a given bond rotation. However, it is 
evident that motions involving large-scale reorientations 
or cooperative rearrangements along the chain occur a t  
slower rates due to higher experienced frictional resistance. 
In fact, the latter is operative in the damping of the 
propagation of reorientation, as one proceeds away from 
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Figure 1. Schematic representation of a given kinetic unit of 
21 bonds. The bonds within the unit are subject to coupled con- 
formational dynamics. The motions of the chain segments beyond 
the ends of the unit are assumed to be stochastically uncorre- 
lated to those within the unit. The rotameric transition takes 
place over the ith bond, the vector m is affixed to the jth bond. 
OXY2 represents the molecule fixed coordinate system with the 
XY plane coinciding with the first two bonds of the kinetic unit. 
For clarity the Z-axis, which completes a right-handed system, 
is not shown. 

a rotating bond, along the chain. In other words, upon 
the rotameric jump of a given bond, the newly induced 
orientation is not affinely transmittedlreflected upon the 
neighboring bonds but instead undergoes some gradual 
attenuation manifested by the reducea mobility of units 
far off from the bond initiating the reorientation. Thus 
it may be possible to extend the DRIS formalism to the 
dynamics of larger scale motions provided that a correction 
in the effective isomeric transition rates is introduced to 
account for the above-described reduced mobility. The 
recently introduced mathematical method of stochastic 
weight matrices multipli~ation'~J~ allows for a very 
systematic and computationally efficient way of incor- 
porating this effect into the DRIS formalism. The essential 
tool is the adoption of a position-dependent friction 
coefficient, as first proposed by Paul and Mazo20 and used 
in the study of helix-coil transitions of polypeptides.21 
The agreement between the results of Fixman and the 
DRIS simulations reported in the following sections serves 
as an a posteriori proof of the validity of the latter scheme. 

In the next section, the physical and mathematical 
foundations underlying the DRIS model will be recapit- 
ulated with emphasis on its extension to cover intermediate 
regime dynamics. An advantage this analysis offers is that 
it is possible to evaluate the cross-correlation functions in 
addition to autocorrelations and to estimate the relative 
importance of cross-modes coupling in relaxation. Illus- 
trative calculations and comparison with previous work 
will be presented in the third section, which will be followed 
by the discussion in the final section. 

2. Theory 

2.1. The  Model and  the General Approach. In 
general, the orientational dynamics results from the su- 
perposition of various wavelength motions. One can think 
of different sizes of independent kinetic units depending 
on the experimental time window of observation. The 
kinetic unit may be viewed as an ensemble of bonds whose 
coupled motion is essentially responsible for the exper- 
imental observation. For instance, in NMR relaxation 
the kinetic unit apparently consists of approximately three 
to five skeletal bonds while light scattering techniques 
probe global diffusive motions. Clearly, the apparent 
relaxation times increase with the size of the kinetic unit, 
i.e., with the number of bonds participating in a concerted 
motion. 

A kinetic unit of 2n + 1 bonds will be considered, in 
general. Figure 1 illustrates the particular case for n = 10. 
The dashed lines on both sides of the unit indicate the 
tails. m is the vector of interest whose orientational 
dynamics will be analyzed. It is rigidly affixed to the 
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rule 

Pn(.PS6~... .rlp;a’P’~’6’~...T‘P‘) = PT[l@.);{*I’l = pz(aP;a’8’) x 

central bond of the unit. We make the following assump- 
tions on the dynamic behavior of the unit: 

(i) The tails do not take active part in the dynamics of 
the kinetic unit. Stated in another way, the vector m is 
dynamically uncorrelated with the bonds beyond the two 
ends of the kinetic unit, hence the term “independent 
kinetic unit”. 

(ii) The first two bonds of the kinetic unit are assumed 
to be fixed in space and determine the laboratory fixed 
frame OXYZ,  indicated in the figure. The orientational 
dynamics of m will be treated with respect to that frame. 

(iii) The portion of the kinetic unit between the origin 
0 and the vector m is assumed to undergo all rotameric 
transitions in the configurational space, while the second 
half of the kinetic unit is not explicitly considered in the 
analysis. The presence of second half of the kinetic unit 
necessarily slows down the motion. The retarding effect 
of the second half will be incorporated in the effective 
friction coefficient experienced by the moving bonds as 
will be delineated in section 2.3. 

(iv) A single transition is assumed to take place at  a 
given time, by any bond i (1 I i I n) to the left of m, within 
the independent kinetic unit. A possible transition is 
shown by the curved arrow in the figure. 

(v) An isomeric rotation over bond i sets in motion the 
bonds located to its right. Thus the motion propagates 
from left to right; i.e., the mobility of the vector m is 
assumed to be imparted by the rotameric transitions of 
the bonds located to its left only. Actually, rotameric 
transitions over bonds situated to the right of m also 
contribute equally to the mobility of m. However, 
neglecting their contribution is inconsequential, since the 
contribution from the rotating bonds to the left of m is 
fully reflected in the direction of m, instead of being evenly 
distributed over both sides of the rotating bonds. 

The autocorrelation of m as well as ita cross-correlation 
with other vectors along the kinetic unit are of special 
interest. I t  should be noted that the chain model adopted 
by Fixman in direct Langevin simulations is based on less 
stringent assumptions than those adopted in the present 
study. 

In parallel with the conventional picture of Markov 
chains of equilibrium statistics, pairwise interdependence 
of skeletal bonds is the basic approximation originally 
adopted in the DRIS formalism, to account for the 
contribution of short-range intramolecular  energetic^.^ The 
latter is directly responsible for the above-described 
internal viscosity effect. Also, the intramolecular elastic 
resistance that originates from nothing else than the 
perturbation of the configurational distribution is inher- 
ently present in this approach inasmuch as the complete 
probability space of accessible configurations is rigorously 
considered. The incorporation of the influence of the long- 
chain connectivity opposing or damping the motion will 
be deferred to section 2.3, as mentioned in assumption iii 
presented above. 

For the case of v isomeric states a, 8, y, ... accessible to 
each bond, v2 X v2 distinct types of pair conformational 
transitions are operative. For a given pair of skeletal bonds 
(i - 1, i), the probability of occurrence of configurations 
(aP) and Ia’P’) within a time interval 7 is referred to as the 
time-delayed joint probability for the pair and indicated 
aSpi(ap;a’p’). Single-bond time-delayed joint probabilities 
may be deduced from 

Pi-l(a;a’) = C&Pi(aP;a’P’) (1) 
Serial multiplication of joint probabilities following the 

(2) 

yields the time-delayed joint probability of occurrence of 
configurations {@I e (a&6C....rl~) and (@V la’8’516’? ...v’p’I, 
with the given time interval T ,  for a sequence of n bonds,7 
indexed from 1 ton. Naturally, with the knowledge of the 
time-delayed joint probabilities for all of the accessible 
configurational transitions, complete information on the 
dynamics of the n-bond sequence is acquired. Accordingly, 
the ensemble average value ( f ( ~ ) )  of any time-dependent 
property f[(@);(@J’], associated with the configurational 
transition (a) - (@r, is readily evaluated from 

P~(PS$’E’) ~4(@;t‘6’) ~5(6C6’f‘) Pn(vP;T’P’) 
P ~ ( P ; P ’ )  ~3(t ; t ‘ )  ~4(6;6’) Pn-l(tl;T’) 

... 

The above double summation, which becomes prohib- 
itively time-consuming to perform as n increases, may be 
readily computed by the matrix multiplication scheme 
recently developed to treat chain conformational stochas- 
tics,18J9 in analogy to the mathematical methods deviseda 
for the linear Ising model and commonly employed in chain 
statistical  mechanic^.^^ The scheme for the evaluation of 
orientational correlation functions (OCF) will be sum- 
marized in the next section. 

2.2. Matrix Multiplication Scheme To Evaluate 
OCFs. The method relies on the serial multiplication of 
stochastic weight matrices of the form18 

rp(t;t) 1 

and 

vi(T) = 

with 

ui(tt;tg+) ... 
ui(tt;g+g+) ... 
ui(tt;g-g+) ... 
ui(g+t;tg+) ... 
ui(g+t;g+g+) ... 
ui(g+t;g-g+) ... 
... ui(g-g-;g-t) 
... Ui(g-g-;g-g’ 
... u,(g-g-;g-g’ 

and 3 I i I n, for the case of three rotational isomeric 
states trans (t), gauche+ (g+), and gauche- (g-) accessible 
to each of the n rotating bonds. 

The case where ( f ( 7 ) )  is the orientational autocorre- 
lation function (m(O).m(T)) associated with the above- 
described central vector m of a kinetic unit of 2n + 1 
bonds will be considered in the following. m moves in 
correlation with the preceding n bonds, as delineated in 
the model. The instantaneous positions of m are pre- 
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scribed by {a) and { @)l a t  time 0 and T ,  respectively, such 
that 

m(O)-m(T) = T{@)mo*T(@)lmo (7) 
where mo is the vectorial representation of m in the j t h  
local bond-based frame in which it is rigidly embedded 
and T(@J is the frame transformation operator, which 
depends on the configuration I@) of the n bonds. The 
orientational autocorrelation function (m(Obm(7) ) may 
be computed by the matrix multiplication scheme ac- 
cording to eqs 8-lL19 

(m(O)-m(~)) = moT(D@E3)(E3@F)mo (8) 
Here Ek is the identy matrix of order k, F col (1 0 0 0 
1 0 0 0 l), the symbol Q represents the direct product, the 
superscript T indicates the transpose, and the matrix D 
is defined as 

n 

D 3 FT( n[Ti (0)@Ti( r ) ] )  
i=l  

in which 

is found from2' 

n 

(JT@Eg)n[(Vi(7)@Eg) llT~(0)QTi(7)IIl(JQEg) (10) 

Here J col (1 1 .... 1) and Ti(7) is the conventional 
orthogonal matrix transforming vectorial or tensorial 
quantities rigidly fixed in the bond-based local coordinate 
system i + 1 into their representations in frame i, on the 
basis of the rotational isomeric state of bond i a t  time 7.12 

Thus, TI@]' equates to n;=2Ti(~). A similar relationship 
in terms of Ti(0) holds to T(@]. It is noted that the first 
bond of the kinetic unit is not considered. The latter 
prescribes the absolute orientation of the kinetic unit, 
which does not affect the internal orientational correla- 
tions. IIT~(O)QT~(T)II is the diagonal supermatrix of the 
form1B 

i=2 

1 
T,QT,+ 

... 

(11) 
where Tt, Tg+, and Tg- are the transformation matrices 
where the torsional angles for the t, g+, and g- states of 
bond i are inserted. 

The above formulation, which has been developed for 
the evaluation of orientational autocorrelation functions, 
may be readily extended to cross-correlations between 
distinct vectors along the chain. Let us consider, for 
instance the cross-correlation between the vectors u and 
v, situated respectively a t  the ith and j t h  bond-based 
references frames of a given kinetic unit. Let us take j > 
i. The cross-correlation between u andv, ( U(O).V(T)), may 
be evaluated with the same mathematical schemes as the 
one presented above for the autocorrelation of m, provided 
that the transformation matrices TJO) corresponding to 
the local frames in the range i I p I j - 1 are set equal 
to the identity matrix of order 3. 

L 
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So far we presented the methodology for an efficient 
computation of orientational correlations. Clearly, cor- 
respondence with real chain behavior relies on the as- 
signment of realistic transition probabilities for the bonds 
in the kinetic unit. The determination of the effective 
rotameric transition rates will be treated in the next 
subsection. 
2.3. Determination of Time-Delayed Joint  Prob- 

abilities pi(arB;{q). Two major factors are considered in 
the evaluation of the stochastic weights associated with 
the isomeric transitions of a given pair of bonds: (i) The 
intramolecular conformational energy barrier to be sur- 
mounted when effectuating the rotation and (ii) the 
frictional resistance increasing with the size of the reori- 
enting unit accompanying a given bond rotation. Clearly, 
those effects are of short-range and long-range character, 
respectively. The former may be estimated from the 
considerations of two-dimensional energy maps, con- 
structed as a function of two consecutive torsional angles; 
this yields information on the heights of the saddles whose 
relative values with respect to isomeric minima will be 
used as the activation energies in the classical Arrhenius- 
type expressions for the rate constants. The second effect 
will be treated through adoption of position-dependent 
friction coefficients in the front factor of rate constants, 
as will be presented below. 

In general, for a given time 7 the time-delayed joint 
probabilities pi(a@;h) are related to the transition or 
conditional probabilities c i ( a P / { ~ )  by the relationship 

pi(.P;rV) = ci(h/.P)pi"(aP) (12) 
where pio(ap) is the equilibrium probability of state (aj31 
for bonds (i - 1, i). The latter may be directly determined 
from the Boltzmann weight of the corresponding state in 
the ensemble of v2 isomeric pairs. The conditional 
probability ci({q/aP) for the indicated transition is an 
element of the u2 X u2 transition probability matrix C~(T)  
for the interdependent pairs of bonds (i - 1, i). The latter 
reads6+ 

Ci(7) = exp{-Ai.r) = Bi exp(-AiTIBi' (13) 
Here Ai is the transition rate matrix of order v2 governing 
the kinetics of pair transitions, Bi and Ai are the respective 
matrices of eigenvectors and eigenvalues resulting from 
the diagonalization Ai = BiAiBi-' of Ai. The off-diagonal 
elements of Ai represent the rate constants associated with 
the transitions between the isomeric states (ttl, (tg'), ..., 
(g-g-), which are numbered from 1 to 9, such that the 
element AIJ refers to the passage from the J t h  to the I th  
state. In conformity with the principle of detailed balance, 
each column in Ai sums up to zero, which determines the 
value of the diagonal elements. Explicit expressions for 
Ai may be found from refs 6-8. The rate constants ri 
therein are given by Kramers' high-friction limit expression 
as 

where y and y* refer to the curvature of the energy path 
at  the minimum and saddle point, respectively, E,& is the 
activation energy for the specific transition, and fi,*ft is 
the effective friction coefficient for bond i. For the case 
where (k - i) bonds, including the vector m affixed to the 
bond n, are set in motion upon the rotameric transition 
of bond i, {i,eff appearing in eq 14 may be expressed1lsz6 as 
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where P is a constant of proportionality and sip is the 
separation of thepth atom from the axis of rotation defined 
by the bond i, which undergoes the isomeric transition. 
The brackets indicate the average over all configurations 
accessible to the moving units. In general, the number k 
- i of bonds set in motion upon the rotameric transition 
over bond i is not uniquely defined and depends on the 
individual configurations of the k - i bonds. Consequently, 
the location of the vector m relative to bonds i and k varies 
from one configuration to the other. However, on the 
average, inasmuch as m is confined to be at  the center of 
the independent kinetic unit, bonds a t  both sides of m 
may be assumed to experience same frictional resistance. 
Consequently the effective friction coefficient reduces to 

n 

ci,& = 250 (si;) (15a) 
p=i+l 

which, from moment of inertia considerations for a random 
coi1,2l may be expressed by the proportionality (n  - i)2. 
Also, in view of the lack of precise quantitative knowledge 
on P, y, and y*, those parameters may be combined as a 
single proportionality constant A, and the expression for 
the effective rate constant becomes 

ri = A,(n - i)-2 exp{-Ea,JRg (16) 
The above equation deserves special attention. The 
exponential part arises from the specific chain confor- 
mational energetics whereas the term (n  - iF2 may be 
viewed as a property common to all chainlike structures 
and responsible for the slowing down and/or damping of 
the propagation of reorientation away from the rotating 
bond. Accordingly, ri represents the effective rate constant 
associated with the motion of the nth bond as a result of 
the isomeric transition of bond i. 

According toeq 16, a position-dependent rate is assigned 
to skeletal bonds, depending on their location relative to 
the investigated bond n in the kinetic unit. Clearly, the 
latter is identified by the vector m whose orientational 
behavior is investigated. Its dynamic behavior is then 
accepted to be characteristic of the kinetic unit where it 
belongs. n will be varied in the range n I 100, for an 
understanding of the variation of the apparent relaxation 
times with the size of kinetic units. 

2.4. Orientational Correlation Times. A quantita- 
tive measure of the orientational correlations between 
different vectorial quantities rigidly embedded in a given 
kinetic segment is the associated correlation time, which 
may be readily determined from the area enclosed by the 
normalized time decay curves of the OCFs. Accordingly, 
for a pair of bond vectors li and lj the orientational 
correlation time Tij equates to 

Usingthe identities (li(O).l;(a)) = (li(O))-(lj(-)) = (li)'(lj) 
and (li(O)*lj(O) ) = (lrlj), where the time arguments of static 
properties are omitted for brevity, eq 17 may be rewritten 
as 

Tij = ((li.lj) - (li).(lj))-l;i; (18) 
where the unnormalized correlation time ;ij is defined by 

For a given segment of n bonds, Tij associated with any 
pair of bonds 1 I i I j I n may be conveniently written 
as the elements of a correlation time matrix T .  This is a 
symmetric matrix of order n, with the elements on the 
diagonal representing the autocorrelation times and the 
off-diagonal elements Tij with i # j ,  the cross-correlation 
time between bond vectors separated by (j - i) bonds. 
Alternately, the reciprocal of Tij may be viewed as the 
relaxation rates associated with different order orienta- 
tional correlations. 

3. Calculations 
3.1. The Chain Parameters. A hypothetical poly- 

ethylene-like chain with perfect tetrahedral geometry will 
be considered. Three states t, g+, and g- with respective 
torsional angles 0", 120°, and -120O and energies 0, 0.5, 
and 0.5 kcal/mol will be assigned to each skeletal bond. 
The g+g- and g-g+ states leading to a pentane effect will 
be assigned an extra second-order interaction energy of 
2.0 kcal/mol, in analogy with conventional treatments of 
polyethylene chains. No second-order interaction energy 
will be present in the other isomeric states and their 
energies will be found from simple addition of the single 
bond conformational energies. Thus bond interdepen- 
dence comes into play only through occurrence of g+g- or 
g-g+ states. Heights of the barriers surrounding the 
isomeric tt minima in two-dimensional energy maps will 
be taken as 3.5 kcal/mol. The passages g+ - g- are 
precluded and the escapes from g*g* and g*gr states 
necessitate activation energies of 3.0 and 0.5 kcal/mol, 
respectively. The proportionality constant A, in the rate 
constants is taken as 2.77 X 101l/s. 

3.2. Evaluation of Static and Dynamic Orienta- 
tional Correlations. The orientational correlation func- 
tions (li(o)'lj(T) ) have been evaluated following the scheme 
outlined in section 2.2. For that purpose as a first step, 
time-delayed joint probabilities are determined by the 
approach of section 2.3 and inserted into the stochastic 
weight matrices, which constitute the basis of the matrix 
multiplication scheme. 

For the particular case of autocorrelations, both the 
subscripts i and j in (ii(O)-lj(~) ) equate to n and mo in eq 
8 is replaced by the unit vector (1 0 O)T, representing the 
investigated bond in its local frame. Direct application of 
eqs 8-11 yields the autocorrelation function at  a given 
time. The complete time dependence is obtained by 
repeating the procedure for several choices of T.  The 
resulting time decay curve is numerically integrated 
following eq 17 to determine the corresponding correlation 
time T.  The upper curve in Figure 2 displays the reciprocal 
correlation times 1/7 computed for kinetic segments of 
various sizes, as indicated by the abscissa l / i .  Thus, l / ~  
is representative of the relaxation rate of a skeletal bond 
whose orientational motion is coupled to the preceding i 
bonds. A gradual increase in correlation time is predicted 
with the increase in the number of bonds that cooperatively 
participate in the relaxation. 

Likewise, cross-correlations are found by applying the 
same procedure to li(0) and l j (~ ) ,  where j # i. For that 
purpose, j is equated to n and the scheme of eqs 8-11 is 
followed with the adoption of identity matrices instead of 
T,(O) in the range i I p I j - 1. The family of curves in 
Figure 2 displays the correlation times associated with 
(li(O).lj(T)) as a function of l / i ,  for various (j - i), as 
indicated in the caption. It is worth noting that the values 
of (li(O).lj(7)) depend on the locations of i and j on the 
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Figure 2. Dependence of reciprocal correlation times 1 / ~  on 
the position i of the investigated bond. The uppermost curve 
corresponds to the autocorrelation ( l i ( O ) . l i ( ~ )  ). The remaining 
curves represent 1 / ~  associated with (li(O).li+k(s)) in the order 
of increasing values of k from 1 to 10, such that the lowest curve 
corresponds to k = 10. 

j - i  

Figure 3. Loss of the static orientational correlation (l&) with 
increasing separation 0’ - i) of the bond vectors. The exponential 
decrease with (I’ - i) is clearly apparent from the straight line 
resulting from the plot of (lrl,) versus (I’ - i). 
kinetic unit as well as on j - i. In other words, the 
correlation functions differ whether j is to the right or left 
of i with respect to the origin. The differences that arise 
due to short-chain effect are not appreciable, however, 
and only the results of the case where j > i are reported 
in this work. 

For illustrative purposes, the two static properties (l+) 
and (li)’(lj) found from the intercept and the asymptotic 
limits of the (li(O)’lj(T)) versus 7 curves are plotted in 
Figures 3 and 4, respectively. The former depends on the 
relative separationj - i of bonds, regardless of their location 
in the kinetic unit. For clarity, the natural logarithm of 
(lrlj) is plotted against 0’ - i). It is observed from Figure 

0 5 1 0  1.6 

I 

0 

Figure 4. Dependence of infinite time croes-correlation function 
(li(O).lj(m)) on the position i of the investigated bond from the 
fixed end of the kinetic unit. A family of curves result from the 
various choices of the bond index j .  j is equal to i + k, with k 
= 0, 1, 2, 3,4,  5, and 10 in proceeding from right to left. 

3 that the static orientational correlations (lplj) are 
exponentially lost as the spacing of the bonds increases. 
The infinite time correlations (li)’(lj) are influenced by 
the position of the investigated bonds with respect to the 
fixed ends of the kinetic unit as shown by the family of 
curves in Figure 4. Those correlations are found to be 
negligibly small beyond - 15 intermediate bonds between 
li and lj. The curves are plotted for several values of j 
indices, as indicated in the corresponding figure caption. 

3.3. Results in Terms of Relaxational Modes. For 
Gaussian model chains of n bonds, the passage to normal 
coordinates and the corresponding independent relax- 
ational modes is carried out through the t r ans f~ rma t ion l~*~  

q = Q 1  (20) 
where 1 is the column matrix of the bond vectors l i  and 
q is the column matrix of the normal modes qi, with 1 I 
i I n. Q is the symmetric n X n transformation matrix 
with the element Qii operating between the ith bond vector 
li and kth mode vector q k  according to 

The mode correlation functions (qi(O).q,(T)) may be 
expressed, using eq 20, as 

n n  

(qi(o).qj(T)) ~ , ~ [ Q k i Q , ( l , ( o ) . l m ( 7 ) ) ]  (22) 

For a system with independent modes as in the Rouse 
model, the cross-correlations ( ~ ( O ) . q , ( t ) ) ,  with i # j ,  
equate to zero. Fixman’s simulations of polymer dynam- 
ics13 suggest that the contribution of cross-correlations 
between normal modes is of secondary importance in local 
relaxational processes and that cross-mode coupling may 
be neglected as a first-order approximation. Those 
inferences are drawn from the time decays of the end- 
to-end vector and “perpendicular” dipole vector autocor- 
relation functions, in hypothetical short chains with 90° 
bond angles and 3-fold symmetric rotational potentials. 
Also, the analysis reveals that an extremely small fraction 
of relaxational modes have Gaussian rates and the majority 
of modes exhibit a fixed rate. Mode correlation functions 

k=l m=l  
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Figure 6. Dependence of the terminal normal mode relaxation 
rate u , ( q )  on the number n of bonds participating in cooperative 
relaxation process. The results obtained in the present study for 
various n up to n = 150 are represented by the empty circles. The 
filled circles follow from the simulations of Fixman,Is rescaled 
for comparative purposes. An approximately linear dependence 
on n is predicted in both approaches. In the limit of an infinitely 
long chain, the least-square linear fit of the results of the present 
work yields a rate of 0.5 X 1Ol/s. 

will be analyzed in the following to assess the validity of 
those findings. It is noted that in the present work local 
segments of polymer chains are treated whereas finite 
chains are considered in Fixman's simulations. Inasmuch 
as conformational relaxation in both cases results from 
the collective contribution of n coupled bonds, it seems 
interesting to compare results from both approaches 
insofar as the qualitative dependence on n and the 
frequency distribution of various relaxational modes are 
concerned. 

In parallel with the well-established definition for 
correlation times given above, it is possible to define rates 
of relaxational modes Vij(q)  as 

n n  

where 

Thus, the correlation times computed in the preceding 
section are readily inserted into eqs 24 and 25 to obtain 
the rates of relaxational modes. 

Results from calculations are shown in Figures 5-7. In 
Figure 5, the rates u,(q) associated with the terminal mode 
autocorrelation function (qn(O)*qn(T)) are shown by the 
empty circles, for several size kinetic units characterized 
by the number n of bonds participating in the motion. 
The filled circles represent results from Fixman's simu- 
lations, obtained with a 3-fold symmetric barrier of 4kT, 
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1 1 
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2.d- 
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0 

Figure 6. Dispersion of normal relaxational modes for a segment 
of n = 16 coupled bonds. The rate of the kth relaxational mode 
U k k ( q )  is found from eqs 24 and 25 in which the unnormalized 
correlation time defined by eq 19 is inserted. The empty circles 
are computed in the present work. Filled circles are from the 
work of Fixman. Except for one or two slowest modes, a plateau 
value is observed for all k, in both treatments. See the caption 
to Figure 8 for the curve drawn between the points. 
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Figure 7. Dispersion of normal relaxational modes for various 
size kinetic units. The results are obtained for n = 10 (O), 16 (e), 
50 (A), and 100 (A). 

which are rescaled for a comparative analysis. The 
dependence of the terminal mode rate on the length of the 
chain segments is found to be approximately linear in 
conformity with Fixman's predictions. In the limit aa n - m, the rate approaches afinite value equal to 5 X 106/s, 
from a least-squares fit of the results. 

The dependence of rates on mode number is shown in 
Figures 6 and 7. Figure 6 displays the results for n = 16 
obtained in the present approach (empty circles) and Fix- 
man's work (filled circles). Similar qualitative behavior 
is seen in both sets of results despite the differences in the 
model chains and stochastic methods. The majority of 
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Figure 8. Unnormalized rates pkh(q) of the exactly orthogonal 
relaxational modesversus k/(n + 1). The normalization of ?hh(q) 
using eq 24 yields the curve displayed in Figure 6. 

the modes exhibit a more or less fixed rate, except for a 
few slowest modes. Similar results obtained for n = 10, 
16, 50, and 100 are shown in Figure 7 for a better 
understanding of the dependence on chain length. The 
plateau value in the relaxation rates becomes even more 
apparent with the increase in n. For clarity only modes 
with odd k values are shown in the figures. 

I t  is noted that the above representation of chain 
behavior in terms of normal modes determined from the 
transformation of eq 22 is only approximate. The cross- 
correlations do not vanish as confirmed by the nonzero 
values presently obtained for vij(q), when i # j .  On the 
other hand, it is possible to find a transformaJion matrix 
S that numerically diagonalizes the matrix T of unnor- 
palized relaxation rates, so as to yield the diagonal matrix 
Y of the unnormalized rates according to 

; = [s=;s]-' (26) 
The elements of ; furnish important information on the 
dispersion of the n uncorrelated modes contributing to 
relaxation. They are shown in Figure 8, for the cases n 
= 10,16, and 24. A smoother change with mode number 
is discerned in the slow relaxation regime compared to 
Figure 7 although the plateau behavior is still preserved 
over a wide range of relaxation spectrum. 

The normalization of the v d q )  values obtained from 
eq 26, by using eq 24, yields the curve displayed in Figure 
6, in close agreement with the approximate approach of 
eqs 24 and 25. This validates the use of eqs 24 and 25 for 
an approximate passage to the mode domain. 

4. Discussion and Conclusions 
The results obtained in the present study are based on 

a systematic evaluation of the time-delayed joint prob- 
abilities of a sequence of bonds in a long chain. The 
assumption of a position-dependent friction coefficient is 
central to the formulation. Its incorporation into the 
formulation is not rigorously derived but is only postulated, 
following previous treatments.20*21*26 Yet the basic results 
are in striking agreement with predictions from direct Lan- 
gevin simulations. Those results are mainly (i) the linear 
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dependence of apparent relaxation times on the number 
n of bonds participating in relaxation and (ii) the existence 
of a substantially large number of high-frequency modes 
forming a pronounced plateau. The agreement may be 
taken as a support of the dynamic rotational isomeric state 
model and its extension to longer sequences. It would be 
desirable to establish a more rigorous connection between 
the present model and the general Langevin treatment. 
The relationship would follow by properly expanding the 
dominating master equation into the Taylor series, under 
the smoothness conditions imposed by the position-de- 
pendent friction coefficient, and comparing with the 
conventional equations of chain dynamics. At  the present 
we are not able to derive mathematically rigorous analogies, 
however. 

According to the DRIS model, the dynamics of a 
sequence originates from single-bond transitions taking 
place over time scales of about lo-" s. Experimental and 
theoretical arguments in favor of activation energies of 
the order of those involved in single-bond transitions are 
now well established in the The longer time 
dynamics of moving sequences of the present model is the 
accumulated effect of such single-bond transitions. The 
present stochastic treatment directly determines the 
evolution of the collective dynamics of the chain. Whether 
it is the best way of extrapolation to longer times may only 
be established by comparison with several other simulation 
techniques. It should be noted at  this point that the 
present matrix generation technique offers distinct com- 
putational advantages. For example, the joint probabilities 
for all transitions for a chain of several hundred bonds 
may be carried out without any serious time or space 
requirements in an ordinary computer, while only very 
few trajectories of a chain of about hundred bonds may 
be generated with molecular dynamics or Brownian 
simulations. Furthermore, the real chemical structure of 
the chain may very easily be incorporated into the present 
calculation scheme. The effort required is equivalent to 
that of the well-established RIS scheme of chain statistics. 
Because of such advantages, it was possible for us to 
evaluate, for the first time, the time-dependent cross- 
correlations of bond vectors in full detail and obtain an 
estimate of the range of correlations in the polyethylene 
chain. Thus, it becomes possible to investigate, rigorously, 
some long-standing important problems of dynamic cor- 
relations such as the validity of resolving the bond au- 
tocorrelation function into a product of an internal and 
an external orientational autocorrelation function.30 

I t  should be mentioned that the chain connectivity effect 
inhibiting large-scale motions of the tails is not rigorously 
considered but is treated through a mean-field formalism 
based on the adoption of a dynamically independent 
kinetic unit moving symmetrically with respect to a central 
bond in which the vector of investigation is embedded. 
The two portions of the kinetic unit are assembled to 
undergo cooperative transitions so as to localize the motion 
within the kinetic unit. Accordingly the first half of the 
kinetic unit is assumed to undergo any transition, provided 
that the experienced friction coefficient is rescaled to 
account for the drag exerted on the overall kinetic unit. 
This approximation affects the absolute rates of relaxation 
without altering the frequency distribution of relaxational 
modes, which is the subject of interest in the present work. 

It is interesting to note that the molecular geometry 
adopted by Fixman is much simpler than the real and 
detailed structure of polyethylene assumed in this study. 
Also, the bond transitions are more detailed in the present 
model and include neighbor interdependence effects and 
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exact locations and energies of saddle points through which 
the transitions take place. Such details do not seem to 
strongly influence qualitative results such as the scaling 
of rates with the length of the sequence and the global 
distribution of rates for a given sequence, which by their 
very nature are of generic origin. It should be noted, 
however, that such details are of major importance in 
comparing, for example, the dynamics of different poly- 
meric species. 
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