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ABSTRACT
Motivation: Analysis of protein sequence and structure data-
bases usually reveal frequent patterns (FP) associated with
biological function. Data mining techniques generally consider
the physicochemical and structural properties of amino acids
and their microenvironment in the folded structures. Dynamics
is not usually considered, although proteins are not static, and
their function relates to conformational mobility in many cases.
Results: This work describes a novel unsupervised learning
approach to discover FPs in the protein families, based on
biochemical, geometric and dynamic features. Without any
prior knowledge of functional motifs, the method discovers
the FPs for each type of amino acid and identifies the con-
served residues in three protease subfamilies; chymotrypsin
and subtilisin subfamilies of serine proteases and papain sub-
family of cysteine proteases. The catalytic triad residues are
distinguished by their strong spatial coupling (high intercon-
nectivity) to other conserved residues. Although the spatial
arrangements of the catalytic residues in the two subfamilies
of serine proteases are similar, their FPs are found to be quite
different.The present approach appears to be a promising tool
for detecting functional patterns in rapidly growing structure
databases and providing insights in to the relationship among
protein structure, dynamics and function.
Availability: Available upon request from the authors.
Contact: bahar@pitt.edu

1 INTRODUCTION
Elucidation of a protein’s three-dimensional (3D) structure is
viewed as a major step in understanding the molecular basis
of its biological function. Knowledge of structure may not be
sufficient, however, for understanding the mechanism of func-
tion, because biological function often depends on conform-
ational dynamics. Usually, the protein function is associated
with particular sequence or structure motifs, and the iden-
tification of functional patterns and their role in the overall
dynamics of the protein requires additional data and analysis.

∗To whom correspondence should be addressed.

With the exponential growth in the number of experiment-
ally determined structures in the Protein Data Bank (PDB)
(Bermanet al., 2000), a wealth of computational methods,
usually based on sequence comparisons, have been developed
to examine or extract such patterns, while structural dynamics
has not been systematically invoked. One can utilize pattern
recognition approaches using prior biological knowledge, or
adopt pattern discovery methods to find statistically significant
patterns that can be tested and verified experimentally.

A small number of residues are usually reported to be dir-
ectly involved in protein function. This suggests that there
are strong correlations between function and microenviron-
ment. Microenvironment refers to the local structure assumed
by residues close in space, but not necessarily contiguous
along the sequence. Protein function is however a collective
property of the structure, and it is conceivable that the global
protein dynamics is coupled with the local structure near the
active site.

A catalytic residue dataset (Bartlettet al., 2002) was built by
manually extracting information from primary sources in the
literature. A thorough analysis, in terms of secondary struc-
ture, solvent accessibility, flexibility, conservation, quatern-
ary structure and function, has been performed on the residues
directly involved in catalysis in 178 enzyme active sites. This
work provided a good understanding of the molecular features
that affect catalytic function and, in particular, the importance
of flexibility. However, it is not designed to retrieve informa-
tion automatically, or to discover new frequent patterns (FPs).

Several web-based databases to search similar substruc-
tures are freely available in the public domain. PROCAT
(Wallaceet al., 1997) uses a geometric hashing algorithm
to build and search 3D enzyme active site templates from
conserved geometry. WEBFEATURE (Bagley and Altman,
1995; Liang et al., 2003) applies a Bayesian supervised
learning algorithm for a succinct characterization of the site
microenvironment, expressed in terms of a set of biochemical
properties. However, the results are sensitive to assumptions
about background distributions and training sites chosen. The
PINTS (Patterns in non-homologous tertiary structures) server
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(Stark and Russell, 2003) allows for searches of a reasonably
large number of predefined structure and function motifs in
three different ways: (1) protein versus pattern database (2)
pattern versus protein database and (3) pairwise comparison
of proteins. This work is significant as it detects similarities
in the spatial arrangement of side chains among protein struc-
tures without any prior knowledge of the active or binding site
(Russell, 1998). It also develops a statistics to calculate the
significance of root-mean-square deviation (RMSD) between
spatial positions of equivalent amino acids after optimal super-
imposition of matching structural patterns (Stark and Russell,
2003). However, the algorithm is developed to find local
patterns (radius<7.5 Å) in non-homologous proteins, exclus-
ively, and suffers if two similar proteins are compared. It
excludes amino acids with side chains containing only H and C
atoms (Ala, Phe, Gly, Ile, Leu, Pro and Val) that are not spe-
cific enough to efficiently discriminate between correct and
false matches.

Two other unsupervised methods have proved to conduct
successful discovery of novel sequence–structure pattern. I-
site (Bystroff and Baker, 1998) is a library of short sequence
patterns that strongly correlate with 3D structural elements
of protein. It provides a new methodology for local struc-
ture prediction. TRILOGY (Bradleyet al., 2002) treats both
sequence and structure component as patterns, which are iden-
tified and extended simultaneously during the search process.
Thousands of significant sequence–structure patterns were
discovered in this work. However, patterns of structurally
conserved residues are not necessarily adjacent in the protein
sequence and can occur in any order, such as the trypsin-like
catalytic triad. Patterns that lack sequence–pattern component
will not be detected by these algorithms.

In this work, a novel unsupervised learning approach is pro-
posed to discover FPs in protein (sub)families. In addition to
sequence and structure similarities, structural dynamics are
considered. These patterns are thus characterized in terms of
their dynamics, biochemistry and geometry in the microen-
vironment. Without any sequence alignment, structurally
conserved residues whose sequence and order are not neces-
sarily well maintained can be identified. Experiments indicate
different patterns in the microenvironment at the catalytic
triad of the examined three protease subfamilies, which are
correctly distinguished in the detected patterns.

2 METHODS
An overview of the proposed method is presented in Figure 1.
A set of proteins belonging to a given family is selected as
the training dataset. Features are extracted from all the amino
acids in this dataset. Each amino acid corresponds to one entry,
represented by the amino acid sequence index and the extrac-
ted features. These entries are organized into 20 groups by
amino acid type. The Apriori algorithm is applied to each
group to find FPs that correspond to different amino acids.

Fig. 1. Overview of the proposed method.

All the residues exhibiting conserved features are identified
by an iterative search algorithm, and these residues are fur-
ther ranked by the level of their interconnectivity in the 3D
structure.

2.1 Dataset
Two classes of enzymes, serine proteases and cysteine pro-
teases are analyzed here. Serine proteases typically have a
His–Asp–Ser catalytic triad at the active site. These three
residues, which occur far apart along the amino acid sequence,
are grouped together in the 3D structure to form the spe-
cific conformation at the active site of the enzyme. Cysteine
proteases catalytic residues also have similar clustering prop-
erties, the triad being often comprised of Cys, His and Asn.
Conserved geometric and dynamic patterns presumably occur
in the microenvironment of the catalytic triad, in line with
the specific function of hydrolytic cleavage of the appropri-
ate bond in the substrate. The proposed unsupervised learning
algorithm will detect these patterns.

The Enzyme Classification Database (Bairoch, 1993) con-
tains 780 PDB entries corresponding to the serine pro-
teases class E.C.3.4.21, and 122 entries corresponding to the
cysteine proteases class E.C.3.4.22 (as of 28 March 2003).
These enzymes are classified into evolutionary subfamilies
(Rawlings and Barrett, 1993). In this work, two largest sub-
families, S1-Chymotrypsin (S1) and S8-Subtilisin (S8), of
serine proteases and the largest subfamily, C1-Papain (C1),
of cysteine proteases are examined. To reduce structural
redundancy, 90% sequence identity is used to select repres-
entative chains from the PDB by PDB-REPRDB (Noguchi
and Akiyama, 2003), which yields 79, 7 and 6 representative
proteins in S1, S8 and C1 subfamilies, respectively. In FEA-
TURE (Bagley and Altman, 1995), six proteins, namely 1arb,
1gct, 1sgt, 1ton, 3est and 4ptp, were examined to characterize
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Table 1. Proteins examined in the present study

S1 Chymotrypsin
Gamma-chymotrypsin A, 1gct, 3.4.21.1 240 H57, D102, S195
Trypsin, 1sgt, 3.4.21.4 223 H57, D102, S195
Tonin, 1ton, 3.4.21.35 227 H57, D102, S195
Native elastase, 3est, 3.4.21.36 240 H57, D102, S195
Beta trypsin, 4ptp, 3.4.21.4 223 H57, D102, S195

S8 Subtilisin
Subt. carlsberg complex, 2sec, 3.4.21.62 338 D32, H64, S221
Complex of subt. bpn’, 1lw6, 3.4.21.62 344 D32, H64, S221
Subtilisin dy in complex, 1bh6, 3.4.21.62 274 D32, H64, S221
Savinase, 1svn, 3.4.21.62 269 D32, H64, S221
Mesentericopeptidase, 1mee, 3.4.21.62 339 D32, H64, S221
Proteinase k, 1ic6, 3.4.21.64 279 D39, H72, S224
Thermitase, 1thm, 3.4.21.66 279 D38, H74, S225

C1 Papain
Cathepsin b, 1huc, 3.4.22.1 252 C29, H199, N219
Cathepsin b, 1the, 3.4.22.1 253 C29, H199, N219
Procathepsin b, 3pbh, 3.4.22.1 317 C29, H199, N219
Cathepsin l, 1icf, 3.4.22.15 217 C25, H163, N187
Papain cys-25, 1ppn, 3.4.22.2 212 C25, H159, N175
Protease omega, 1ppo, 3.4.22.30 216 C25, H159, N179

the microenvironment of catalytic triads. The same proteins
are included in our analysis of S1 subfamily, except for 1arb
that belongs to another (S5-lysyl endopeptidase) subfamily;
all representative proteins of the S8 and C1 subfamilies are
included in our analysis (Table 1).

2.2 Feature extraction
The microenvironment near each residue is defined as a spher-
ical region of 7.0 Å radius centered about its Cα-atom. Each
amino acid is characterized in terms of its dynamic features
(see below), and the biochemical and geometric features of
the residues in its microenvironment.

2.2.1 Dynamic features: Gaussian network model The
Gaussian network model (GNM) (Baharet al., 1997, 1998),
an elastic network model for describing the equilibrium
dynamics of proteins, is used for characterizing the dynamics
features. In the GNM, theα-carbons(Cα) form the network
nodes, and the nodes located within an interaction cut-off
distance of 7.0 Å are connected via uniform elastic springs.
The network connectivity is described by a Kirchhoff mat-
rix � (Baharet al., 1997). The element�ij = 1 if residues
i andj are connected, and zero otherwise; and�ii = −zi ,
wherezi is the number of connections at nodei (also called
contact number CN; see below). The diagonal terms of�−1

scale with mean-square fluctuations of residues, and the off-
diagonal terms scale with the cross-correlations. Application
to more than 100 proteins showed that the GNM predictions
agree well with experimental data (Kunduet al., 2002).

A major utility of the GNM is the rapid assessment
of collective modes of motions (Baharet al., 1999). The
i-th eigenvector of� represents thei-th mode shape (i.e.

distribution of residue mobilities), the frequency of which
scales with thei-th eigenvalue. The slow modes have been
shown in numerous applications to drive cooperative motions
(i.e. domain movements, hinge-bending motions, etc.) relev-
ant to biological function. See for example, the application to
hemoglobinT → R2 transition (Xuet al., 2003) and the ref-
erences cited therein. Here, the slowest two modes, referred
to as slow mode 1 (S1) and slow mode 2 (S2), are examined,
and the mobilities of individual residues in these modes are
mapped into a scale of 10 levels, varying from 0 (rigid) to 9
(very mobile). The residues subject to the smallest and largest
motions in S1, for example, are assigned the attributes S1-0
and S1-9, respectively.

Another structural property that has been confirmed in
numerous studies to have a strong impact on equilibrium
dynamics is the CN, which is defined as the number of
amino acids (orα-carbons) that coordinate the central amino
acid within a first interaction shell of 7.0 Å. Examination of
PDB structures shows that the CNs vary over a broad range
(2 ≤ CN ≤ 16). The lower limit refers to the sequential neigh-
bors at fully extended and solvent-exposed regions, and the
upper limit refers to highly packed core regions. Accordingly,
the observed CNs were mapped here into four discrete levels
CN-1, CN-2, CN-3, CN-4, corresponding to the respective
ranges 2≤ CN ≤ 4, 5 ≤ CN ≤ 8, 9 ≤ CN ≤ 12 and 13≤
CN ≤ 16.

In a strict sense, mobilities and contact numbers are not
independent, the regions subject to high CN being constrained
in space. However, mobilities contain the additional effect of
distribution of contacts characteristic of the particular pro-
tein architecture, and our results support the inclusion of both
attributes for detecting FPs.

2.2.2 Biochemical features: amino acid type and property
The amino acid classification is based here on both the spe-
cific amino acid identity (Ala, Val, etc.) and the side chain
chemical features or functional groups (Koolman and Rohm,
1996), defined as aliphatic (ALI): Gly, Ala, Val, Leu and Ile;
S-containing (SULFUR): Cys and Met; aromatic (ARO): Phe,
Tyr and Trp; neutral/polar (NEUTR): Ser, Thr, Asn and Gln;
acidic (ACID): Asp and Glu; Basic (BASIC): Lys, Arg and
His; and imino acid (IMI): Pro. Thus, a lysine residue, for
example, is assigned two features, LYS and BASIC. The use
of features associated with taxonomy information allows for
‘mining multiple level association rules’ (Han and Fu, 1995),
and provides more flexibility, since it would be too restrictive
to consider amino acid types, only, without side chains prop-
erties, and it would not be specific enough to consider side
chains properties only.

2.2.3 Geometric features: 3D reference frame A 3D ref-
erence frame (Pennec and Ayache, 1994) is ascribed to each
residue, using the three backbone atoms N, Cα and C′ (car-
bonyl C). These three atoms form a frame (a point and a
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Fig. 2. Feature extraction methodology. (A) Definition of residue-
centered reference-frame. (B) Examination of microenvironment,
and the type and identity of residues in the geometric subspaces
Q1–Q8 and (C) the results for Ser-164, in S1 subfamily.

trihedron; Fig. 2A) that uniquely defines the position and ori-
entation of the residue in the 3D space. The origin of the
reference frame coincides with the Cα atom, and the three
directional vectorse1, e2 and e3 are defined in Figure 2B.
The microenvironment is divided into eight quadrants using
(±e1, ±e2, ±e3), numbered from Q1 to Q8 (Fig. 2C). All
the biochemical features, extracted for the residues in the
microenvironment are expressed with reference to this quad-
rant information, the residue positions being identified by their
Cα-atom coordinates. The combined biochemical–geometric
features were found to yield a sufficiently discriminative
description of the structural and functional properties in the
microenvironment.

2.2.4 A feature extraction example: 1gct-Ser-164 Let us
consider the Ser-164 of the PDB file 1gct as an illustrative
example for feature extraction (Fig. 2). Ser-164 is found by
the GNM to have minimal fluctuations/mobilities in the slow
mode 1 (S1-0) and a moderate mobility (level 2) in slow mode
2 (S2-5). It has seven neighbors in its microenvironment, so
its contact number falls into the range 2 (CN2). The seven
neighbors consist of one Asn and one Cys in Q1 (note that
the index starts from 0), one Ala and two Leu in Q2, one
Asn in Q3 and one Thr in Q4. According to the amino acid
classification outlined in Section 2.2.2, the microenvironment
contains a neutral and a sulfur-containing residue in Q1, three
aliphatic residues in Q2, a neutral residue in Q3 and in Q4, as
summarized in Figure 2.

Fig. 3. An illustrative example of a priori algorithm.

2.3 FP discovery—Apriori algorithm
An implementation of the Apriori algorithm (Borgelt and
Kruse, 2002; Agrawalet al., 1993) is used for the induction of
association rules. Figure 3 illustrates how this method works.
Let us suppose that we are interested in the characterization of
the histidine residues in a given protein family. Let us assume
that the family is comprised of two proteins, PDB1arb and
PDB4ptp. PDB1arb has two histidines, His-57 and His-149,
and PDB4ptp has one, His-57.

The geometric, biochemical and dynamic features
described above are extracted for each of the three histidines
of all proteins in the database. For illustrative purposes, let us
denote these features as {A}, {B}, {C} and {D}. The number
of occurrences of each feature is counted first to determine the
initial FPs with singleton (process 1 in Fig. 3). A FP is often
evaluated by its absolute or relative support. The absolute sup-
port is the number of times an FP is observed in the database.
The relative support is the percentage of absolute support in
the database. Here, {B} occurs 2 times in 3 tested histidines,
and therefore has a relative support of 67% and an absolute
support of 2, which is concisely designated as 67%/2. Typic-
ally, the larger the support, the more significant the FP is. The
minimum support is suitably set to meet the need of different
database users. Relatively low minimum support may include
less important FPs and increase the computational complexity.
In this example, the minimum support is set to be 67%/2.

The length of the initial singleton FP is one since it has only
one feature, and its length will be augmented by one at each
iterative step, by selecting the FPs that satisfy the minimum
support requirement (process 2). The remaining FPs are com-
bined together to generate the augmented FPs (process 3). The
supports of the augmented FPs are then calculated (process 4).
The steps 2–4 are repeated until the FP with maximum length
is reached. In Figure 3, the longest FP is {ABC}, with sup-
port 33%/1. Alternatively, the shorter FPs {AB} and {AC}
with larger support (67%2) could have been identified. There
is usually a compromise between FP length and its support,
and the optimal FP length/support varies depending on the
specific questions addressed.

i80



Mining frequent patterns in protein structures

2.4 Identification of conserved residues
In the application of the Apriori algorithm to proteins, first the
FPs with maximum length were discovered in the neighbor-
hood of each type of amino acid. The FP was considered to be
a ‘conserved FP’ provided that it occurred at least once in each
protein belonging to the examined subfamily. Those residues
participating in conserved FPs were identified as ‘conserved
residues’. Next, the conserved residues are removed from the
original dataset, and the Apriori algorithm is applied again to
the modified dataset. Other FPs with shorter length and the
corresponding conserved residues are identified. This proced-
ure is performed iteratively until the longest FP that is not ‘con-
served’ is hit. All the conserved patterns of 20 types of amino
acids were identified by this iterative search for each family.

2.5 Rank of conserved residues
Once the conserved residues are identified by the Apriori
algorithm, a ranking method is needed to distinguish the cata-
lytic residues. It is assumed that the catalytic residues are
optimally coupled with other conserved residues to achieve
the highest cooperativity. Coupling in 3D is expressed as
the number of contacts made with the conserved residues.
To this aim, each conserved amino acid is represented by
its side chain centroid (except for Gly where Cα is used);
the centroids separated by<7.0 Å are connected to form
a network of conserved residues; and the number of con-
nections at each junction (centroid) is counted. The amino
acids that show the lowest interconnectivity (smallest number
of connected neighbors) are removed from the list of con-
sidered residues. The connectivity of the network formed by
the remaining conserved residues is examined again, and the
residue with the lowest rank is removed, and so on. This
procedure is repeated until the ‘core’ residues, which are all
interconnected, are reached. The ‘core’ residues are assigned
the score zero, and the others are scored according to the
number of iterations required to reach the ‘core’ residues. All
the conserved residues were thus scored for each protein in
the training dataset, and an average score〈s〉 over all fam-
ily members was calculated for each conserved residue. A
cut-off threshold for the score was assessed from the receiver
operating characteristic (ROC) curve (see Section 3.5).

3 RESULTS AND DISCUSSION
3.1 Identification of conserved residues
Let us consider the serine residues in the serine protease family
as an example. Information for a set of 111 serine residues is
extracted from the 5 proteins in S1, and for a set of 250 serine
residues from the 7 proteins in S8. Since each of these proteins
contains one His–Asp–Ser catalytic triad, the minimum sup-
port is then set to be the number of proteins divided by the total
number of a certain kind of amino acid in this dataset, i.e. the
minimum support for serine residues is 5/111 (or 4.5%) for S1
and 7/250 (or 2.8%) for S8. The Apriori algorithm described

above is then applied to each set of entries to identify the con-
served serines. The analysis yields two serine residues in the
S1-Chymotrypsin subfamily (Ser-195 and Ser-214 using the
sequence index of 1gct), and four (Ser-221, Ser-125, Ser-190
and Ser-207 in 1svn) in the S8-subtilisin family (Table 2).

The procedure is repeated for all the 20 types of amino
acids. The identified conserved residues are listed in Table 2.
The entries in the table show the residue number along the
sequence (using a representative protein from each family).
The numbers in parentheses are the lengths of the FP (i.e. the
number of attributes) associated with the particular conserved
residue. ‘N/A’ means that no conserved residue was identified.
Our results show that, the catalytic residues (highlighted in
gray) are all captured by the present FP detection algorithm,
while their FPs do not necessarily have the maximum length.

3.2 Frequent pattern discovery
The FPs around the catalytic residues in the two serine pro-
tease subfamilies are found to be quite different, as listed in
Table 3. The different FPs observed for the same residues
in the two families suggest that the microenvironment has
a strong effect on the specific catalytic function. Notably,
studies that do not consider the amino acid properties in the
microenvironment cannot detect the difference in the FPs of
the two subfamilies.

Another important factor is the protein dynamics. Many,
although not all, catalytic residues have S1 and S2 at the
minimum level, i.e. their mobilities are severely restricted.
Minima in the slow mode shapes refer to key regions that
mediate the global mechanics of the enzyme. Therefore, the
catalytic residues tend to occupy key regions from the mech-
anical point of view, in addition to their chemical role. Finally,
the contact numbers are found to be often conserved among
the equivalent catalytic residues.

3.3 Comparison with multiple sequence
alignments

The multiple sequence alignments (MSA) of the three sets of
proteins listed in Table 1 showed that the residues identified
by the Apriori algorithm to have conserved FPs in 3D were
all conserved in the MSA, but some residues conserved in the
MSA did not necessarily have conserved FPs in 3D space. This
is consistent with the fact that the conservation of the microen-
vironment and global dynamics is a more restrictive (and
discriminative) feature than sequence conservation. Another
observation is that amino acids that sequentially neighbor the
catalytic residues tend to be conserved. This was the case
near His-57 and Ser-195 of serine proteases and Cys-29 and
Asn-221 of cysteine proteases, but not near Asp-102 of serine
proteases and His-199 of cysteine proteases.

3.4 Rank of conserved residues
The present unsupervised learning algorithm identified 22, 22
and 26 conserved residues in the S1, S8 and C1 subfamilies,
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Table 2. Conserved residues identified by Apriori algorithma

S1-Chymotrypsin: representative protein: 1gct
HIS ASP SER ALA CYS GLY TRP ILE Others
57(8) 194(13) 195(15) 55(16) 42(13) 196(19) 141(11) 212(8) N/A

102(11) 214(11) 183(11) 191(13) 44(15)
56(10) 58(9) 142(14)

182(9) 140(14)
43(14)

193(13)
197(13)
211(7)

S8-Subtilisin: representative protein: 1svn
HIS ASP SER ALA ASN LEU MET PRO THR VAL PHE Others
67(15) 32(14) 221(15) 223(20) 155(9) 96(13) 222(18) 225(14) 220(17) 177(14) 189(4) N/A

226(14) 181(5) 125(11) 228(19) 233(11) 201(8) 66(16)
64(9) 190(8) 126(9)

207(7)

C1-Papain: representative protein: 1huc
HIS CYS ASN ALA GLN GLY TRP ILE LEU PHE PRO SER TYR Others
199(4) 29(18) 219(12) 31(14) 23(15) 229(11) 30(12) 201(6) 216(8) 32(14) 76(7) 28(18) 146(7) N/A

26(9) 34(11) 27(11) 221(12) 203(6) 220(11) 214(7)
71(9) 73(9) 152(8) 94(6)
62(6) 70(9)

aThe residue numbers along the sequence of the representative chain of each subfamily are listed. The numbers in parantheses show the lengths of the corresponding FPs (i.e. the
number of attributes conserved among all equivalent residues of the same subfamily members).

Table 3. Frequent patterns corresponding to catalytic residues

S1
His S1-0 S2-0 CN-2ASP0-Q2 ACID0-Q2 ALA0-Q1 ALI0-Q1 ALI0-Q5
Asp S1-0 S2-0 CN-3ALI1-Q8 ALI0-Q8 ARO0-Q6 NEUTR0-Q3 SER0-Q3 BASIC0-Q7 HIS0-Q7 ALA0-Q8
Ser S1-0 S2-0 CN-3ALI0-Q8 NEUTR0-Q7 SER0-Q7 ACID0-Q5 GLY0-Q8 ALI0-Q4 SULFUR0-Q1 GLY0-Q1 CYS0-Q1 ASP0-Q5

ALA0-Q4 ALI0-Q1
S8

His CN-2 THR0-Q5 GLY0-Q4 HIS0-Q8 BASIC0-Q8 NEUTR0-Q1 NEUTR0-Q2 ALI0-Q4 NEUTR0-Q5
Asp CN-3 GLY0-Q4 SER0-Q7 LEU0-Q8 GLY0-Q3 VAL0-Q5 ALI0-Q3 NEUTR0-Q7 ALI0-Q4 NEUTR0-Q4 ALI0-Q2 ALI0-Q1 ALI0-Q8 ALI0-Q5
Ser S1-0 S2-0LEU0-Q7 SER0-Q7 THR0-Q5 ALA0-Q6 GLY0-Q1 NEUTR0-Q7 ALA0-Q5 ALI0-Q7 NEUTR0-Q5 NEUTR0-Q8 ALI0-Q1

ALI0-Q6 ALI0-Q5
C1

His CN-3 ALI0-Q4 ALI0-Q8 ALI0-Q1
Asn CN-2 S1-0 S2-0TRP0-Q4 ARO0-Q2 SER0-Q8 GLY0-Q1 ARO0-Q4 BASIC0-Q6 ALI0-Q6 NEUTR0-Q8 ALI0-Q1
Cys CN-3 S1-0 S2-0ALA0-Q5 HIS0-Q3 PHE0-Q8 TRP0-Q4 BASIC0-Q3 SER0-Q5 GLN0-Q6 ARO0-Q8 ARO0-Q4 NEUTR0-Q5 GLY0-Q2

NEUTR0-Q6 ALI0-Q2 ALI0-Q4 ALI0-Q5

The dynamic features are indicated in boldface.

respectively. These residues rank-ordered on the basis of their
cooperativity (see Section 2.5) are presented in Table 4, for
a representative member (1gct, 1svn and 1huc; columns A,
C and E) of each subfamily, along with the average results
over the members of each subfamily (columns B, D and F).
The numbers after the comma are the scores of the residues.
The ‘core’ residues are scored zero. For example, in 1gct
(column A), His-57 and Ser-195 are among the six core
residues and colored red. The non-catalytic and core residues
are colored orange. Although Asp-102 is not at the core, it

is still close to the core with score 2. The ribbon diagram
of 1gct is shown in Figure 4A. The conserved residues are
color-rendered in sticks, and the residues with score higher
than 2 are colored gray. The average scoressavg for the S1-
chymotrypsin subfamily are presented in column B. The top
ranking residues in a family are colored red (savg ≤ 0.5),
yellow (0.5< savg ≤ 1.5) and green (1.5< savg ≤ 2.5).

The results for S8-Subtilisin family and a representative
member (1svn) are shown in columns C and D and Figure 4B.
The results for C1-Papain Subtilisin family are shown in
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Table 4. Rank of conserved residues in the three familiesa

S1-Chymotrypsin S8-Subtilisin C1-Papain 
(A)1gct (B) family (C) 1svn (D) family (E)1huc (F) family
HIS57, 0 SER195,0 ASP32, 0 SER221, 0.14 HIS199, 0 GLN23, 0.17
SER195, 0 ALA55, 0 HIS64, 0 MET222, 0.29 ASN219, 0 CYS29, 0.33
CYS42, 0 HIS57, 0.2 SER221, 0 HIS64, 0.43 GLN23, 0 SER28, 0.33
ALA55, 0 CYS42, 0.2 SER125, 0 SER125, 1.00 SER220, 0 SER220, 0.83
CYS58, 0 CYS58, 0.2 LEU96, 1 PRO225, 1.43TRP221, 0 GLY27, 1.00
GLY196, 0 GLY196, 0.2 LEU126, 1 ASP32, 2.00 CYS29, 1 HIS199, 1.67
SER214, 1 SER214, 1.4 MET222, 1 ALA223, 2.14 SER28, 2 CYS26, 2.33
ASP102, 2 ASP102, 1.8 PRO225, 2 THR220, 2.57 GLY27, 3 TRP221, 2.5 
GLY43, 3 GLY43, 2.2  ALA223, 3 ASN155, 3.29 CYS26, 4 CYS71, 2.83
ILE212, 3 ILE212, 3.0 THR220, 4 LEU126, 4.14 CYS71, 5 PHE32, 3.17
GLY197, 4 GLY197, 3.0 ASN155, 5 PHE189, 4.29 GLY73, 6 ASN219, 3.33
GLY140, 5 GLY140, 4.0 PHE189, 6 HIS226, 4.71 GLY70, 6 GLY73, 3.83
GLY193, 5 GLY193, 4.0 HIS226, 6 LEU96, 4.85  PHE32, 6 GLY70, 3.83
GLY44, 6  GLY44, 4.4  SER190, 7 SER190, 5.14 ILE201, 7 TRP30, 4.00
ALA56, 6  ASP194, 5.0 PRO201, 7 PRO201, 5.71 TRP30, 7 TYR94, 6.00
GLY142, 6 ALA56, 5.0   HIS67, 8  HIS67 , 6.71 GLY229, 8 GLY229. 6.17
ASP194, 6 GLY142, 5.0 VAL177, 9 VAL177, 6.71 ILE203, 8 PRO76, 6.67
CYS191, 7 CYS191, 6.0 SER207, 9 SER207, 7.71 LEU216, 8 LEU216, 7.17
TRP141, 8 TRP141, 6.6 ALA228, 9 ALA228, 7.71 PRO76, 8 ALA31, 7.17
CYS182, 8 CYS182, 7.0 THR66 , 10 ASP181, 8.29 TYR214, 8 TYR146, 7.17
ALA183, 8 ALA183, 7.0 ASP181, 10 THR66, 8.71  CYS62, 9 ILE201, 7.33
GLY211, 8 GLY211, 7.0 LEU233, 10 LEU233,17.71 ALA34, 9 ILE203, 7.67

ALA31, 9 TYR214, 7.67
SER152, 9 ALA34, 8.17

TYR146, 9 SER152, 8.33

TYR94, 9 CYS62, 8.67

*Catalytic residues are written in italic and bold face. Numbers are the scores defined
in Section 2.5. 

columns E and F (the ribbon diagram is not shown due
to space limitation). The catalytic residues are all ranked
high, although not always the highest, among the conserved
residues, which suggest that they are close to the core in 3D
space. Interestingly, most of the conserved residues presently
detected tend to cluster together in the 3D structure.

3.5 Threshold score and ROC curves
The cutoff score for distinguishing catalytic residues among
the set of conserved residues is determined by a ROC plot
of [1 − specificity] against sensitivity (Figure 5). Sensitiv-
ity provides a measure of the method’s ability to detect all
the catalytic residues (true positives, TP), while specificity is
a measure of the false positive (FP) rate, given by the ratio
TP/(TP+FP). In order to capture all TPs (catalytic residues)
while maximizing the specificity, the lowest average score that
yields 100% sensitivity needs to be adopted as the threshold
score. For the respective S1, S8 and C1 subfamilies, the
optimal threshold scores are 1.8, 2.0 and 3.3, based on the
scores indicated in red in the columns B, D and F of Table 4.
Alternatively, a threshold value common to all examined sub-
families can be defined, which becomes here 3.3, i.e. the
maximum of the threshold scores for the individual famil-
ies. The average ROC curve is shown by the solid line in
Figure 5. The curve indicates that on the average 100% sens-
itivity (i.e. detection of all three catalytic residues) would
involve simultaneous identification of two more conserved

(A)

(B)

Fig. 4. Ribbon diagrams of 1gct(A) and 1svn(B) and the conserved
residues identified by the Apriori algorithms. Residues are colored
according to their cooperativity scores (Table 4).

Fig. 5. ROC plot—sensitivity versus specificity—for the present
algorithm applied to three subfamilies, and the average ROC plot
(solid curve). Sensitivity is the fraction of catalytic residues cap-
tured with a given threshold (cutoff) score, and specificity is the
fraction of catalytic residues (TPs) among all identified (conserved)
residues (TPss and FPs). On the average, a sensitivity of 1 is
accompanied by a specificity of 0.6, i.e. two additional conserved
residues are identified with the three catalytic residues. However,
the accuracy of the method is remarkable, given that the five con-
served residues (comprising the catalytic triad) are detected amongst
N ∼ 250 residues.

residues, given that the specificity is∼60%. However, this
specificity refers to the pool of conserved residues that are
singled out by the Apriori algorithm. If, on the other hand, the
method is evaluated with regard to the entire set ofN residues,
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the specificity varies from 96.7 to 99% for the different
families.

4 CONCLUSIONS
A novel unsupervised approach to discover biologically mean-
ingful FPs in protein structures is presented in this study.
The approach incorporates features associated with collect-
ive dynamics (GNM slow mode shapes) as well as the
biochemical (amino acid types and physicochemical prop-
erties) and geometric (3D coordination directions) features
in the microenvironment. Without any knowledge of func-
tional motifs and/or sequence alignments, conserved residues
are identified, and the FPs that distinguish these residues
are discovered. These conserved residues are further ranked
according to their interconnectivity in 3D space. Notably,
the catalytic residues emerge among the top-ranking con-
served residues, consistent with their optimal packing to
engage in cooperative dynamics. The other top-ranking
conserved residues could be experimentally examined as
elements underlying stability and/or mediating functional
communication.

Among the three groups of features considered for detecting
frequent patterns, geometric and biochemical features refer
to the microenvironment in the 3D structure. Several stud-
ies, including the present one, confirm the importance of
the microenvironment in defining the functional role of the
active residues. A third property—key role in collective
dynamics—emerges here as a discriminative feature. While
static properties have been invoked in many studies, dynamics
is a feature that has not been included in earlier pattern recog-
nition/discovery schema, partly due to the lack of efficient
tools for high-throughput characterization of protein dynam-
ics. Recent advances in modeling proteins as elastic networks
now permit us to efficiently elucidate the low frequency
motions of proteins, and exploit the connection between
these motions and the biological function that has been poin-
ted out in numerous studies. Notably, the catalytic residues
take part in key regions that control the global dynamics, as
evidenced by their minimal mobilities in the slowest modes
S1 and S2. This feature suggests that conserved residues are
distinguished not only by the unique static properties of their
microenvironment, but also by their finely tuned involvement
in global dynamics. It also draws attention to the functional
coupling between local chemistry and collective mechanics.
The set of conserved residues presently identified are indeed
engaged in a network of interaction that can be instrumental in
inducing allosteric effects or transmitting signals away from
the catalytic site.

This approach can be used to discover and annotate all fre-
quent patterns in the protein structure database. In addition,
it can help to predict structure and function of uncharac-
terized proteins, and identify the important amino acids
or structural regions. The methodology can be applied to
identify novel motifs, folding cores, and/or binding sites

that share comparable dynamic features, and assist in better
understanding the correlation between structure, dynamics
and function.
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