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Abstract

Two different computational methods are employed to predict protein folding nuclei from native state structures, one based on an elastic

network (EN) model and the other on a constraint network model of freely rotating rods. Three sets of folding cores are predicted with these

models, and their correlation against the slow exchange folding cores identified by native state hydrogen–deuterium exchange (HX)

experiments is used to test each method. These three folding core predictions rely on differences in the underlying models and relative

importance of global or local motions for protein unfolding/folding reactions. For non-specific residue interactions, we use the Gaussian

Network Model (GNM) to identify folding cores in the limits of two classes of motions, shortly referred to as global and local. The global

mode minima from GNM represent the residues with the greatest potential for coordinating collective motions and are explored as potential

folding nuclei. Additionally, the fast mode peaks that have previously been labeled as the kinetically hot residues are identified as a second

folding core set dependent on local interactions. Finally, a third folding core set is defined by the most stable residues in a simulated thermal

denaturation procedure of the FIRST software. This method uses an all-atomic analysis of the rigidity and flexibility of protein structures,

which includes specific hydrophobic, polar and charged interactions. Comparison of the three folding core sets to HX data indicate that the

fast mode peak residues determined by the GNM and the rigid folding cores of FIRST provide statistically significant enhancements over

random correlation. The role of specific interactions in protein folding is also investigated by contrasting the differences between these two

network-based computational methods.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The theory of protein folding remains an unresolved

question in modern structural biology. Various models to

describe the process of how a polymer chain can

reproducibly reach a unique folded conformation from an

unfolded sequence of amino acids have been proposed.

These models rely on the concept of a multidimensional free

energy landscape, which is funnel-shaped. This concept

nicely describes the way proteins reliably fold into their

energetically most favorable conformations. However,

because the reaction coordinates of this funnel are unknown,

exact pathways rarely correspond to experimental data

points. As experiments reveal more information about

unfolding and folding kinetics a clearer connection between

the theory and experiment is required.

So far the testing of theories has relied heavily on

increasingly sophisticated computer simulations and calcu-

lations to simulate experimental results. However, even

with increasing computer power, there have only been a few

molecular dynamics (MD) simulations where native-like,

folded structures have been obtained from an unfolded state

[1,2]. These simulations are for very small sub-domains of

proteins. Far more computational studies focus on the

reverse process of simulated unfolding. For small, two-state

folding proteins that fold reversibly, this provide infor-

mation about the folding pathway(s). Many of these

unfolding studies have involved time-intensive MD simu-

lations of a single protein structure [3].

Hydrogen–deuterium exchange (HX) experiments in

proteins provide local probes of internal fluctuations in the

proteins. Intramolecular, hydrogen-bonded amide protons

experience exchange with deuterium atoms from the bath

water on a wide range of scales. Although, the fastest

exchanging backbone amide protons tend to reside on the

protein surface, there are significantly slower exchanging

amides distributed throughout the protein that indicate a
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‘protected’ residue that may be important for stability. We

will focus on the exchange mechanism [4] expressed by the

kinetic scheme

closed!
kop

kcl

open!
kx

exchanged ð1Þ

where an equilibrium between the ‘closed’ and ‘open’ forms

of a given amino acid is assumed. Once in the open form,

the amide can exchange its proton with the solvent. When

kcl @ kop; conditions favor folding of the protein, which one

can express by the observed exchange rate as

kobs ¼
kopkx

ðkcl þ kxÞ
ð2Þ

The two limits of this kinetic exchange rate are termed EX1

and EX2. The EX1 limit describes unfolding far from

physiological conditions such as high pH or high denaturant

concentration. In this limit, kcl ! kx; and consequently

kobs ¼ kop: The EX2 limit describes unfolding under near-

physiological conditions. The observed rate constant is

given by kobs ¼ Keqkx; using kcl @ kx using and the

equilibrium constant Keq ¼ kop=kcl: The free energy cost of

exchange relative that experienced by the same amino acid

at solvent-exposed conditions is

DGHX ¼ 2RT lnðkobs=kxÞ ¼ 2RT ln Keq ð3Þ

The ratio kobs=kx is also referred to as the protection factor

describing how likely a given amide proton is to exchange

compared to when that residue is in a random polymer or

small molecule. Since the computational methods employed

use the native state as the starting point, we will restrict our

comparisons to EX2 data.

We extend two fast computational techniques that rely

upon the native structure to infer protein unfolding nuclei

and pathways, and compare these predictions with native-

state HX experiments. The first technique is based on the

Gaussian Network Model (GNM) of proteins [5,6]. The

residues are modeled as beads subject to Gaussian

fluctuations connected by elastic springs that account for

chain connectivity and intramolecular interactions. GNM

results were previously shown to satisfactorily reproduce

the experimentally measured HX protection factors [7]. This

study focused on the class of motions determined by slow

modes, termed global motions because of their dominant

role in controlling the collective dynamics of the protein.

Another GNM study identified the so-called kinetically hot

residues [8] from the peaks in the high frequency modes.

These positions were pointed out to be usually conserved

within protein families and linked to potential folding nuclei

[8]. Both slow mode minima which indicate the hinge sites

in the global motions, and fast mode peaks that are centers

of localization of energy, will be tested against experimen-

tally determined folding cores.

A different network model of proteins is the constraint

network model employed in the Floppy Inclusions and

Rigid Substructure Topography (FIRST) software [9,10]. In

contrast to the GNM, FIRST adopts a full atomic description

and considers atom specificity to identify the rigid clusters

of residues that are likely to form the folding cores. We

extend the FIRST folding core predictions [11] to a larger

set of proteins with HX data and test the significance of the

results.

Results are presented for three sets of predicted folding

cores: (i) GNM slow mode minima (global motions) (G), (ii)

GNM fast mode peaks (kinetically hot residues) (H), and

(iii) FIRST mutually rigid folding cores (F), and all three

sets are compared to experimentally defined folding cores

(E). The correlations between these four sets will be

presented along with the level of significance for each.

2. Models and methods

We augmented the set of 10 proteins used in the original

FIRST folding core comparison [11] to include all proteins

that have published HX data [12–19] for the native state in

the EX2 limit. The resulting set of 29 proteins is listed in

Table 1.

2.1. The Gaussian Network Model (GNM)

GNM has been used on many proteins to determine the

preferred motions uniquely defined by the contact topology

of residues in the native state. The protein in the GNM is

modeled as an elastic network (EN). Each node represents a

single residue and its mean position coincides with that of

the corresponding Ca-atom in the PDB structure. Pairs of

residues located within a cutoff distance, rc, of 7.0 Å are

assumed to be connected by elastic springs (Fig. 1(A)). This

creates an EN where all connected residues interact via a

harmonic potential with a uniform spring constant, g as first

proposed (at atomic scale) by Tirion [20].

The dynamics of the structure in the GNM is fully

defined by the topology of contacts described by the

Kirchhoff matrix G. For a network of N interacting sites, the

elements of G are defined as

Gij ¼

21 if i – j and Rij # rc

0 if i – j and Rij . rc

2
X

1 # j # N
j–l

Gij if i ¼ j

8>>>>><
>>>>>:

ð4Þ

where Rij is the distance between sites i and j: G is simply

the inter-residue contact matrix and its inverse describes the

correlations between residue fluctuations in the neighbor-

hood of the native state. The diagonal elements of the

inverse, G21, are proportional to the mean-square fluctu-

ations kDR2
i l while the off-diagonal elements ½G21�ij refer to

the cross-correlations kDRi·DRjl. The proportionality con-

stant between kDRi·DRjl and ½G21�ij is simply 3kBT=g

where kB is the Boltzmann constant and T is the temperature
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Table 1

Structural properties of proteins used in this study

Protein name Abbrev PDB codea Nb Resolution (Å)

1 Apo-myoglobin apoMb 1a6m 151 1.0

2 Barnase Bnase 1a2p 108 1.5

3 Cytochrome c Cytc 1hrc 104 1.9

4 T4 lysozyme T4lzm 3lzm 164 1.7

5 Ribonuclease T1 RnaseT1 1bu4 104 1.9

6 a-Lactalbumin ha-LA 1hml 123 1.7

7 Chymotrypsin inhibitor 2 CI2 2ci2 64 2.0

8 Ubiquitin Ubq 1ubi 76 1.8

9 Bovine pancreatic trypsin inhibitor BPTI 1bpi 58 1.1

10 Interleukin-1b IL-1b 4ilb 151 2.0

11 Hen egg-white lysozyme HEWL 1hel 129 1.7

12 Equine lysozyme Eqlzm 2eql 129 2.5

13 Protein A, B-domain pAB 1bdd 60 NMR

14 Staphyloccoccal nuclease SNase 1stn 1361 1.7

15 Ribonuclease A RnaseA 1rbx 124 1.7

16 Ribonuclease H RnaseH 2rn2 155 1.5

17 Guinea pig a-lactalbumin gpa-LA 1hfx 123 1.9

18 B1 immunoglobulin-binding domain protein G GB1 1pga 56 2.1

19 B1 immunoglobulin-binding domain protein L LB1 2ptl 78 NMR

20 Cardiotoxin analog III CTX-3 2crs 60 NMR

21 Tendamistat Tnds 2ait 74 NMR

22 Single chain antibody fragmentc scFv 1mcp 237 2.70

23 Human acidic fibroblast growth factor-1 hFGF-1 2afg 127 2.00

24 Cytochrome c551 pacc551 351c 82 1.60

25 Outer surface protein A ospA 1ospO 251 1.95

26 Ovomucoid third domain OMTKY3 1iy5 54 NMR

27 Chicken src SH3 domain cSH3 1srm 56 NMR

28 CheY CheY 3chy 128 1.70

29 Human carbonic anhydrase I HCA-1 1hcb 258 1.60

a The Protein Data Bank identification code [59].
b N refers to the number of residues in the protein.
c In keeping with the experimental data from the previous study [12], we analyzed the folded state formed by residues 1–115 in chain L and 1–122 in

chain H.

Fig. 1. Comparison of two network models for proteins. (A) The elastic network used by GNM. Every residue is represented by a single node and connected to

spatial neighbors by springs. These springs then determine the N 2 1 degrees of freedom in the network and the modes of vibrations about the native state.

(B) The constraint network used by FIRST includes all atoms connected by fixed-length bars representing covalent bonds, hydrogen bonds, and hydrophobic

interactions. (Only heavy atoms are shown in this sketch for simplicity).
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[5]. A recent examination of the X-ray crystallographic B

factors of over 100 proteins showed that the GNM closely

reproduces the experimental data [21], using

kðDRiÞ
2l ¼ ð3kBT =gÞ½G21�ii Bi ¼ 8p2ðkBT =gÞ½G21�ii ð5Þ

A major utility of the GNM is to calculate the shapes and

frequencies of the global modes for a given quaternary

structure with minimal computational cost. N 2 1 GNM

modes are found by the eigenvalue decomposition of

G ¼ ULU21 where U is the orthogonal matrix whose

columns, uk; 1 # k # N; are the eigenvectors of G, and L is

the diagonal matrix of the non-zero eigenvalues, lk; usually

ordered in ascending order after eliminating the zero

eigenvalue. The kth eigenvalue scales with the frequency

of the kth GNM mode. The ith element ðukÞi of uk describes

the motion of residue i along the kth principal coordinate.

The mean-square fluctuations of individual residues can be

rewritten as a weighted sum over all modes as [6]

kðDRiÞ
2l ¼ Sk½ðDRiÞ

2�k ¼ Skð3kBT =gÞ½l21
k ðukÞiðukÞi� ð6Þ

The last term in square brackets plotted against the residues

index i represents the kth mode shape, i.e. the distribution

of residue mobilities in the kth mode. By definition this

distribution is normalized ðSiðukÞiðukÞi ¼ 1Þ; and l21
k serves

as a statistical weight for mode k: Slower modes thus make

larger contributions to kðDRiÞ
2l (or B-factors). In particular,

the first (slowest) modes predicted by the GNM [22–26,6],

or by EN models in general [27–38], have been pointed out

in numerous studies to drive domain movements relevant to

biological function.

GNM global mode minima (G) are defined here as the

positions whose square fluctuations in the slowest mode are

less than 0:2=N (as opposed to 1=N for a uniform distribution

of fluctuations among all the N residues). For the case of

multi-domain proteins, the slowest mode usually describes

the hinge sites at the interface between domains rather than

unfolding of individual domains. Two proteins (ospA and

scFv) were identified to contain more than one domain by

CATH [39]. The second slowest mode was taken in these

two cases, so as to possibly detect the folding core of the

individual domain(s).

Residues participating in the fast modes (H) are those

subject to rapid, local fluctuations. These residues are

considered crucial for stability of the protein [40,41]

because of their many local constraints. The peaks in the

fast mode shapes, (mean-square fluctuation .0.03 for the

average of the ten fastest modes) indicate the set of

kinetically hot residues, H, which will be compared against

the experimental set of slow exchanging residues (E).

2.2. Simulated unfolding with FIRST

The FIRST algorithm identifies rigid and flexible

regions in proteins by means of a constraint network

model of covalent bonds, hydrogen bonds and hydrophobic

interactions [9] where nodes are connected by rigid bars

instead of springs. Fig. 1(B) sketches an atomic-level

constraint network for the same representative network as

shown for the elastic network in Fig. 1(A) for GNM.

These nodes are subject to bond angle constraints,

leaving bond rotations as the only accessible degrees of

freedom. An atomic description is adopted, due to the speed

of the pebble game algorithm, which has at worst a

quadratic dependence of computing time on system size

[42,9]. FIRST defines a network of constraints from an input

3D conformation of the protein and identifies each bond as

flexible (rotatable) or rigid (non-rotatable). Since FIRST

uses an all-atomic representation of proteins, residue

specificity is inherent to the model. Within the context of

the constraint network, each hydrogen bond is assigned an

energy between 0 and 8 kcal/mol defined by its local

geometry [10].

As in a previous comparison against a set of 10 proteins,

we work under the hypothesis that the folding core is

stabilized by a network of non-covalent interactions that are

resistant to denaturation [11]. Thus starting from the native

state, one is able to simulate thermal denaturation by

removing one by one the intramolecular hydrogen bonds, in

order from weakest to strongest energy. As each hydrogen

bond is removed, the rigidity analysis of FIRST is

recalculated providing a map of the increasing flexibility

as the protein unfolds. As the protein is gradually denatured,

the covalent bonds remain intact but the sizes of the rigid

regions decrease and fragment reflecting an increasing

flexibility with increasing temperature. Simulated thermal

denaturation by breaking only hydrogen bonds in order of

energy has been demonstrated to reproduce the HX

unfolding pathways better than random removal of hydro-

gen bonds [11]. It has also been shown that all proteins

undergo a rigid to flexible phase transition upon unfolding at

an average coordination of 2.4 [10]. We adopt the most

stable residues during the simulated unfolding as the folding

core. As in the previous study, we define this set of folding

core residues as the secondary structure residues that remain

mutually rigid the longest in the simulated denaturation

procedure. Unlike the definition of the experimental folding

cores that adopt the entire secondary structures encompass-

ing the slowest exchanging residues, we allow fractions of

large secondary structures to be identified as rigid folding

cores provided that at least three consecutive residues are

mutually rigid with at least three consecutive residues of

another secondary structural element.

2.3. Calculation of overlap

For each of the three computational methods for

predicting folding nuclei, GNM fast mode peaks (H),

GNM slow mode minima (G), and FIRST folding cores (F),

counts of the number of residues in common between the

method and the most slowly exchanging residues by HX (E)

are calculated as a measure of the quality of theoretical
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predictions. Likewise, the level of agreement between the

computational methods is assessed by counting the number

of commonly predicted residues. Calculations are repeated

for each of the 29 proteins listed in Table 1.

Two quantitative measures are defined for assessing the

level of agreement between methods A and B, each probing

the departure from random.

The first measure, sðABÞ; is an enhancement factor

defined as the ratio of the number of residues, cðA;BÞ; found

in common between methods A and B to participate in the

folding core, to the number expected from random selection

of residues, rðA;BÞ: The second measure is the difference,

zðABÞ ¼ cðA;BÞ2 rðA;BÞ; between these two numbers.

Let NA and NB denote the number of residues identified by

methods A and B, respectively. The random probability

pðNA;NBÞ of a match between NA and NB is ðNA=NÞðNB=NÞ;

and the number of residues that will be selected by this

random probability is

rðA;BÞ ¼ NpðNA;NBÞ ¼ NANB=N: ð7Þ

The two measures of overlap between methods A and B

become

sðABÞ ¼ cðA;BÞN=ðNANBÞ ð8Þ

zðABÞ ¼ cðA;BÞ2 NANB=N:

The values s ¼ 1 and z ¼ 0 correspond to random matches.

The quality of agreement increases with increasing s and z:

Table 2 lists the values calculated for each of the 29

proteins analyzed in the present study. All six combinations

of the four methods (three computational and one

experimental) were analyzed. Mean values ksl and kzl over

the 29 proteins, and their standard deviations, are given for

each pair in the last two rows. The overlap parameters

depend upon how many residues are selected by each

method. The number of fast mode peaks is generally smaller

than the number of residues selected by the experimental

procedure outlined by Li and Woodward [12].

3. Results

Fig. 2 shows the folding cores predicted by each of the

Table 2

Correlation measures for folding core prediction methods

s(EH) s(EF) s(FH) s(EG) s(GH) s(GF) z(EH) z(EF) z(FH) z(EG) z(GF) z(GH)

apoMb 1.377 3.084 2.157 2.329 0.809 1.812 1.642 16.219 2.682 16.550 5.377 -0.709

bnase 3.333 2.971 2.314 1.909 1.841 1.894 7.000 17.250 5.111 10.000 12.741 4.111

cytc 3.200 3.200 2.773 1.231 0.800 1.333 5.500 16.500 5.115 0.750 1.250 -0.250

T4lzm 1.268 0.702 1.242 2.161 0.497 0.000 1.689 -5.512 0.976 10.744 -5.902 -1.012

Rnase T1 4.370 3.294 2.286 1.359 1.238 0.667 7.712 4.875 2.250 2.115 -1.500 1.154

ha-LA 1.491 1.435 1.118 2.681 1.720 1.892 1.317 4.244 0.423 10.659 7.545 1.675

CI2 1.103 0.940 1.185 0.768 1.159 1.031 0.563 -1.469 1.875 -4.844 1.188 1.375

Ubq 1.827 1.070 1.070 1.247 1.315 1.070 4.526 2.105 0.855 4.158 2.632 2.158

BPTI 1.726 3.255 2.417 1.184 1.726 1.776 2.103 7.621 4.103 0.621 2.621 2.103

IL-1b 1.348 2.555 1.766 1.648 1.748 1.177 0.775 16.430 3.470 4.325 2.411 2.139

hewl 1.929 0.896 1.034 0.860 0.794 0.215 3.372 -1.395 0.163 -0.977 -7.302 -0.519

Eqlzm 2.092 1.743 2.419 1.550 0.956 0.896 3.132 3.411 1.760 4.256 -0.349 -0.093

pAB 1.607 1.382 1.935 0.964 1.500 1.742 3.400 5.533 5.800 -0.333 7.667 2.000

Snase 1.902 6.725 0.883 0.349 2.473 0.000 0.949 7.662 -0.132 -1.868 -3.088 3.574

RnaseA 3.000 1.444 2.009 1.091 0.470 0.000 6.000 4.000 3.516 0.500 -6.387 -1.129

RnaseH 0.477 0.995 1.914 3.307 0.000 0.702 -1.097 -0.065 6.206 11.161 -4.677 -2.516

gpa-LA 0.447 2.811 0.000 2.916 1.657 2.169 -1.236 7.732 -1.878 10.512 5.390 1.585

GB1 1.667 1.355 1.615 0.602 0.718 0.000 4.804 1.571 1.143 -1.321 -0.857 -0.393

LB1 2.182 2.086 1.765 1.773 0.600 0.918 6.500 7.808 2.167 6.538 -0.359 -1.333

CTX-3 3.195 1.846 1.108 2.517 1.259 2.182 6.183 4.583 0.583 3.617 5.417 0.617

Tnds 2.921 0.974 1.542 1.263 1.167 0.200 5.919 -0.135 1.757 2.500 -8.000 1.000

scFv 1.484 1.467 1.995 1.240 1.254 0.992 1.304 9.228 2.494 7.544 -0.241 1.013

hFGF-1 4.233 2.540 1.411 0.977 0.543 1.465 4.583 2.425 0.291 -0.094 0.953 -0.843

pacc551 1.621 0.000 1.945 2.228 0.932 0.000 1.915 -6.451 2.915 8.268 -6.732 -0.220

ospA 3.508 1.960 1.741 1.364 0.000 1.312 6.434 18.124 4.255 3.470 6.661 -2.900

OMTKY3 1.142 2.077 1.118 1.350 1.246 0.623 5.185 1.370 0.741 2.593 -3.630 1.185

cSH3 1.778 2.545 1.636 1.167 1.273 1.250 5.464 7.000 3.500 0.429 1.000 0.429

cheY 1.173 1.365 1.925 1.102 1.407 1.080 2.672 5.164 5.766 2.781 1.844 2.313

HCA-I 0.701 1.020 2.932 0.623 2.172 1.991 0.039 -2.558 3.953 -7.256 19.907 5.395

mean 2.004 1.991 1.698 1.509 1.147 1.048 3.391 5.285 2.478 3.703 1.227 0.755

stdev 1.044 1.265 0.628 0.729 0.587 0.713 2.542 6.649 2.035 5.334 6.200 1.874

For the enhancement values, s; bold numbers emphasize greater than 50% improvement over random agreements between two methods. The bold numbers

in the paired difference values, z; indicate values larger than one standard deviation from the mean value. The two measures of overlap, s and z; are discussed in

the text and presented for each pair wise comparison of the results from experiments (E), and computations based on GNM global modes (G), fast mode peak

residues (H), and FIRST (F).
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four methods mapped onto the three-dimensional (3D)

structures of horse cytochrome c (cyt c, PDB code 1hrc),

ribonuclease H (Rnase H, 2rn2), B1 immunoglobulin-

binding domain protein L (LB1, 2ptl), hen egg white

lysozyme (HEWL, 1hel), and staphyloccoccal nuclease

(Snase, 2stn). These five proteins serve as representative

examples for the overlap of predicted folding cores for each

of the four methods. These 3D images indicate the spatial

localization of folding cores by colored ribbons and the

secondary structures by gray features. Of the results in Fig.

2, the GNM slow mode minima tend to correlate the poorest

with the other methods. The exception to this is for Rnase H

where the slow modes actually provide the best overlap

(s(EG) ¼ 3.3) with experimental results. In the cases of

HEWL and RnaseH, the overlap between FIRST and

experiment suffer due to too many false positives.

Fig. 3 gives a reduced representation for all 29 proteins,

comparing the four folding core prediction methods. In this

image, the folding cores are stacked above one another and

plotted versus the residue number. The colored blocks

indicate residues that belong to a particular folding core set

from each of the four methods: experimental, E, in red;

GNM slow mode minima, G, in green; GNM fast mode peak

residues, H, in orange; and FIRST, F, in blue. This

qualitative comparison gives a visual representation of the

consensus between methods for any given protein. The

overall correspondence is quite striking for such simple

native-based methods.

3.1. Comparison to HX data

We augmented the study of Li and Woodward [12] with

Fig. 2. Comparison of folding core predictions by four different methods. The four different folding core predictions: experimental (HX), FIRST, GNM fast

mode peaks (fast), and GNM slow mode minima (slow) are mapped onto the 3D structures of five representative proteins. Helices are shown by cylinders and

b-strands by arrows. The HX slow exchange folding core is shown in red, the FIRST rigid folding core is shown in blue, the GNM fast mode peaks are shown in

orange and the GNM slow mode minima are shown in green. Abbreviations for the five proteins shown in this figure are taken from Table 1. The images in this

figure were created using VMD [60].
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seven additional proteins that were unpublished at the time

of their study (hFGF-1 [14], pacc551 [13], ospA [15],

OMTKY3 [16], cSH3 [17], cheY [19], HCA-I [18]).

Keeping with their work, we defined the experimental

folding core as the secondary structural elements containing

the residues with the greatest protection factors in the HX

experiments. These residues became part of set E. Residues

were assigned to secondary structures using the Dictionary

of Secondary Structures of Proteins (DSSP) [43].

3.2. Statistical significance

Table 2 indicates that according to the enhancement

factor ðsÞ most of the correlations between pairs of methods

Fig. 3. Reduced representation of protein folding cores. The folding core predictions for HX slow exchange (red), FIRST rigid (blue), GNM fast mode peak

(orange) and GNM slow mode minima (green) residues are plotted in lines along the sequence for each of the proteins listed in Table 1.
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were at least slightly better than random ðs ¼ 1Þ: The FIRST

rigid cores (F) and GNM fast mode peaks (H) compared to

the experimental HX slow exchange cores (E) yield on

average enhancement factors twice as good at random

chance, while the enhancement drops to 1.5 in the case of

the comparison of the results from GNM slow modes (G)

with experiments. GNM fast mode peaks are also distin-

guished by their small departure from the mean value,

indicated by a standard deviation of 1.044 in Table 2.

Although both EF and EH exhibit high enhancement

factors, the correlation between these methods (indicated

by FH) is much less indicating that the native state folding

information extracted by each method is more complemen-

tary than redundant. This complementarity is easier to

visualize by looking at Figs. 2 and 3.

Two measures for how accurate a method is at predict-

ing observed results are sensitivity and selectivity, which

depend upon the number of true positives (TP), false posi-

tives (FP) and false negatives (FN) predicted by a given

method. The number of TPs is just the value of cðA;EÞ in the

present case, while the number of FPs is the number of

residues selected by theory that are not part of the experi-

mental folding core. The number of FNs is the number of

residues identified by experiment as part of the folding core

but not selected by the theoretical method. Sensitivity,

defined as TP/(TP þ FN), reflects the ability of a theoretical

method to report all experimentally selected residues.

Specificity, defined as TP/(TP þ FP), complements this

information with a measure of the ability to report only the

experimentally selected residues. Fig. 4 plots the sensitivity

(panel A) and specificity (panel B) of the two sets F and H

that have been observed above to yield a reasonable

description of HX slow exchanging core data (E) for each

of the 29 proteins. The expected sensitivities from random

models for these proteins are 0.13 for the pair EH and 0.33

for EF, and the expected specificity is 0.29 for both cases. In

general, the majority of the data points lie above these

values indicating an improvement over random assign-

ments. For any individual protein, the difference between

the two points indicates how the two methods differ in their

performance. FIRST is distinguished by a higher sensitivity,

while GNM fast modes appear to be slightly more specific in

general.

To test if these departures were significant from random

selections of residues, the paired difference values, z; were

calculated. The appropriate statistical analysis for such

nonparametric data is the Wilcoxon signed rank test [44].

According to this statistical analysis, the null hypothesis that

selecting a given number of residues in common by two

methods is no better than random selection may be rejected

because the probability of such an event is less than 0.0005

for the cases of EH ðlz2l ¼ 4:465Þ; EF ðlz2l ¼ 3:535Þ; and

HF ðlz2l ¼ 4:422Þ; where lz2l is the departure from the

mean for a standard distribution centered at 0. Thus the

correlations indicated by large values for sðEHÞ; sðEFÞ and

sðHFÞ indicate that these departures are better than random

selection. This indicates a strong likelihood that the fast

mode peaks and FIRST folding core methods accurately

predict the folding nuclei. Applying the same analysis to the

other pairs of data (EG, HG, and FG) resulted in much lower

Fig. 4. Sensitivity (A) and specificity (B) analysis of FIRST and GNM fast modes predictions with respect to the HX slow exchanging cores for all 29 proteins

listed in Table 1. In both panels, the sensitivities/specificities of the sets F and H are compared. In both panels, open circles refer to the GNM fast mode peaks,

and filled circles refer to FIRST results. The FIRST folding core shows the highest sensitivity while the GNM fast modes appear to be relatively more specific.
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values of lz2l and hence much higher probabilities that such

correlations were the result of random chance. Figs. 2 and 3

present graphical representations of the correlations to

experimental slow exchange cores indicated by these

statistical methods.

4. Discussion

In recent years, there has been a revival in the number of

studies that exploit Go-like models for understanding

protein folding kinetics (see the introduction of Kaya and

Chan’s paper for reference [45]). The major assumption in

these studies is that the native state contact topology plays a

dominant role in defining the protein folding kinetics. The

validity and utility of such coarse-grained approaches have

been tested on numerous protein systems and applications.

While many features relevant to folding kinetics, particu-

larly in the case of fast-folding proteins, can be predicted

by such topology-based models, more detailed systematic

studies are needed.

The present work was undertaken to explore the

predictive ability of two simple models, one based on an

elastic network theory of random networks [46], and the

other on a constraint network composed of rigid but

rotatable connectors similar to the classical freely rotating

chain model of polymer statistics [47,48].

While both models are conceptually simple, they bear

exact solutions and can be readily applied to a series of

proteins. The first relies on fundamental concepts of statistical

thermodynamics, and takes rigorous account of the overall

coupling of all residues. The second has the additional

advantage of incorporating specificity and atomic details

through a network of hydrogen bonds and hydrophobic

contacts. Fig. 1 shows the same small network for both the

elastic network (A) and the constraint network (B). Our

analysis demonstrates that either method can be utilized for

predicting to a reasonable accuracy level the slow exchan-

ging residues observed in HX. Whether these residues form

the folding nuclei is another issue, but to the extent that they

do, the present topology-based coarsegrained models give

insights about the identity or location of folding nuclei.

Correlations between experimental f-value analysis

which has been used to identify potential folding nuclei

from the most stable substructures formed in the transition

state, and these native state folding core predictions were

not made. Since, the f-value analysis relies upon observing

how mutations disrupt crucial non-local interactions and the

resulting folding rates, these f-values relate more directly to

contacts made at the transition state than those forming the

folding cores; and may not be used directly to interpret the

degree of the folded structures.

The relative contact order has been shown to correlate

with the folding rates for small two-state protein folders

[49]. This theory implies that native-state topology has a

dominant role in the rates of protein folding, at least for

two-state folders. A recent study of multi-state protein

folders has indicated that there is, however, no correlation

between the folding rate and relative contact order [50].

Such contradictory results indicate that the complexity of

the protein folding problem and the need to explore folding

using methods that explore different reaction coordinates.

Several groups have employed GNM methods to explore

protein folding. One study created a minimization method-

ology for a simplified lattice model of proteins involving

only hydrophobic and polar residues (HP) based upon a

native state Gaussian fluctuations [51,52]. Although elegant

in the time evolution of states, application to a set of five real

proteins has reproduced the native folded state of these

proteins with root mean square deviations greater than 3.5 Å

[52]. A second approach introduces temperature into the

temperature-free GNM representation as a measure of the

probability of interactions between residue pairs. With this

approach, the native state fluctuations are used as a starting

point to investigate the unfolding as it is allowed to depart

from the native-state biased by the global vibrational modes

[53–55]. This approach seems promising for exploring the

HX data in the EX1 limit (far from native state conditions),

which is beyond the scope of the present study.

Computational comparisons to experimental HX data to

elucidate protein folding have been conducted previously. A

study that selected folding nuclei only on proximity to

charge centers suggested that electrostatics play an

important role in determining protein folding [56]. How-

ever, charged residues exhibit a relatively high probability

to cluster around the active sites of proteins [57] and it is

likely that the nuclei selected by such an electrostatics

method are active-site residues rather than folding nuclei.

Other computational methods of actually reproducing

experimental protection factors by generating a large

ensemble of partially folded states [58] require much

greater computational effort, and previous comparison

with experimental data and GNM predictions does not

lend support to the adoption of such expensive

computations.

The results presented here are for four specific methods

for selecting folding nuclei. Other selection schemes could

be devised as well as better ways to optimize the selection

processes. However, the goal of this study was to investigate

the probability of selecting the residues critical for folding

from simple network models of the native state. Even with

these simple and fast computational methods, the claim that

native state fluctuations and flexibility encode for protein

folding is strongly supported. We assume the native state

contains information concerning how the protein folded into

that native state. The study here used two approaches based

upon the native structure information to investigate the

folding nuclei. The complementarity of these methods is

indicated by the fact that although both FIRST and GNM

fast modes can accurately predict the folding nuclei, the

enhancement factor between these methods is only

moderate, indicated by a value of 1.698.
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