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Abstract: We describe the master equation method for computing the kinetics of protein folding.
We illustrate the method using a simple Go model. Presently most models of two-state fast-folding
protein folding kinetics invoke the classical idea of a transition state to explain why there is a single
exponential decay in time. However, if proteins fold via funnel-shaped energy landscapes, as
predicted by many theoretical studies, then it raises the question of what is the transition state. Is
it a specific structure, or a small ensemble of structures, as is expected from classical transition state
theory? Or is it more like the denatured states of proteins, a very broad ensemble? The answer that
is usually obtained depends on the assumptions made about the transition state. The present method
is a rigorous way to find transition states, without assumptions or approximations, even for very
nonclassical shapes of energy landscapes. We illustrate the method here, showing how the transition
states in two-state protein folding can be very broad ensembles. © 2002 Wiley Periodicals, Inc.
Biopolymers 68: 35–46, 2003
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INTRODUCTION

Proteins fold or unfold via kinetic processes that are
usually well described as sums of exponentials. Small
proteins often fold rapidly with the simplest possible

kinetics: a single exponential relaxation in both fold-
ing and unfolding directions. Substantial theoretical
and experimental efforts have been devoted for defin-
ing the protein conformation(s) that correspond to the
slowest exponential relaxation rates—the rate-limit-

Correspondence to: Ivet Bahar, Center for Computational Bi-
ology and Bioinformatics, University of Pittsburgh School of Med-
icine, L. Kaufmann Building, Suite 601, 3471 Fifth Avenue, Pitts-
burgh, PA 15213; email: bahar@pitt.edu
Biopolymers, Vol. 68, 35–46 (2003)
© 2002 Wiley Periodicals, Inc.

35



ing steps. The problem has been that most theoretical
treatments require some critical ad hoc assumptions;
hence the predicted transition states (TS) may be the
reflections of the flawed assumptions about what the
TS is. In classical chemical reaction theory, there are
usually well-defined single structures (or small en-
sembles) that correspond to the reactant, the TS, and
the product so the task of identifying a structure
responsible for the rate-limiting step succeeds. How-
ever, for proteins, while the native state is unique, the
denatured state is a broad ensemble of conformations,
raising the question of how to characterize the tran-
sition state—as unique structures, or as ensembles.
Here we provide a rigorous way to identify the tran-
sition state populations in models of any complexity.
We describe the kinetics using a master equation.

The master equation formalism1–6 has been devel-
oped for protein folding kinetics and applied in a
number of earlier studies. Lepold et al. studied the
folding of simple lattice chains having different se-
quences by using the master equation approach.7 In
their study, the only transitions allowed were local
conformational changes. They concluded that the
foldability of a sequence is predicted if there is a
single folding funnel leading to a native state and
nonfoldability is predicted if multiple pathways lead
to several stable conformational states. A transition
matrix approach that is equivalent to a master equa-
tion formalism with a finite time approximation was
used by Chan and Dill8 for analyzing macromolecular
collapse dynamics. Their method is based on consid-
ering the transition probabilities at certain time inter-
vals. As the time unit becomes infinitesimally small,
the approach reduces to a standard master equation
formalism. Chan and Dill enumerated all the confor-
mations of a simple lattice model and applied the
transition matrix approach to explore all the possible
kinetic pathways for the folding of the simple lattice
model.

Many proteins fold via two-state kinetics. Two-
state kinetics applies if the protein molecules equili-
brate rapidly between different unfolded conforma-
tions prior to complete folding. Zwanzig was the first
to apply the master equation formalism to describe
protein folding by a two-state kinetics.9,10 Ye et al.
used the general Laplace transformation solution of
master equation formalism to describe the folding
kinetics of a small portion of staphyloccocal protein
A.11 They concluded that the protein folds in a fast
cooperative process, and that neither the initial state
nor the number of local energy minima affect the long
time kinetics of folding.

The master equation for 12-monomer on-lattice
heteropolymers has been solved numerically by
Cieplak et al. and the time evolution of the occupancy

of the native state has been determined.12 In order to
understand the mechanism of secondary structure for-
mation, Eaton and co-workers studied the formation
of a �-hairpin using a master equation formalism.13

Zhang and Chen analyzed RNA folding kinetics using
the same methodology.14 We recently used the master
equation formalism with simple lattice model chains
for gaining an understanding of the physical basis of
unusual � values observed in folding kinetics exper-
iments.15 Here we present the general master equation
approach, applicable for any folding model, and we
show how to use it to unambiguously identify the
“transition state” for folding, even if the system does
not have the classical type of single bottleneck step.

FORMULATION OF THE EQUATION

Stochastic processes underlie much of physics, chem-
istry 6 and biology,16,17 including population dynam-
ics and epidemiology. In the present study, we ana-
lyze the stochastic process of a protein folding de-
scribed as an ensemble of transitions between N
accessible conformational states. If N � 2, this is the
two-state classical mass-action model, but larger N’s
are appropriate for more microscopic models in which
the non-native states are listed exhaustively (only
possible for very simple models) or are collected
together in some meaningful way as “macrostates.”
The time evolution of these states is controlled by the
master equation,

dP�t�/dt � AP�t� (1)

where P(t) is the N-dimensional vector of the instan-
taneous probabilities of the N conformations, and A is
the N � N transition (or rate) matrix describing the
kinetics of the transitions between these conforma-
tions. By definition, the ijth off-diagonal element (Aij)
of A is the rate coefficient for the passage from
conformation j into conformation i. From the princi-
ple of detailed balance, Aij pj

0 � Aji pi
0, where pi

0 is
the equilibrium probability of the ith conformation.
The ith diagonal element of A represents the overall
rate of escape from conformation i. It is found from
the negative sum of the off-diagonal elements in the
same column, i.e., Aii � ��jAji (j � i).

Equation (1) represents a set of N simultaneous
ordinary differential equations. The formal solution
can be cast into a tractable form by decomposing A as

A � B	B�1 (2)
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where B is the matrix of the eigenvectors of A, � is
the diagonal matrix of its eigenvalues �i (�1 � 0 and
�i 
 0 for 2 � i � N) and B�1 is the inverse of B. The
time-dependent probability of occurrence of the ith
conformation [i.e., the ith element of P(t)] can be
expressed in terms of the elements of B, �, B�1, and
P(0) as

Pi�t� � �
j�1

N �
k�1

N

Bik exp��kt��B
�1�kjPj�0�

� �
j�1

N

C�i, t�j, 0�Pj�0� (3)

where C(i, t � j, 0), denotes the conditional or transi-
tion probability of conformation i at time t, given that
the chain was in conformation j at t � 0. For station-
ary processes, C(i,t�j,0) is independent of the initial
time of observation, but depends only on the time
interval t between two successive conformations; that
is, C(i,t2�j,t1) � C(i,t�j,0) for t � t2 � t1. In matrix
notation, Eq. (3) reads

P�t� � B exp	t�B�1P�0� � C�t�P�0� (4)

where exp{�t} is a diagonal matrix whose ith element
is exp{�it}, and C(t) is the conditional or transition
probability matrix. C(t) fully describes the stochastic
process of N � N transitions. The time-delayed joint
probability of conformations i at time t2 and j at time
t1 is found from

P�i, t2; j, t1� � C�i, t2 � t1�j, 0�Pj�t1� (5)

Combining these probabilities, we obtain the time-
delayed joint probability,

P�A, t2; B, t1� � �
i�1

NA �
j�1

NB

C�i, t2 � t1�j, 0�Pj�t1� (6)

for specific conformational subsets (or macroconfor-
mations) A and B of interest. NA and NB denote the
numbers of conformations in these subsets.

Rearranging Equation (3) gives Pi(t) as a sum of
exponentials

Pi�t� � �
k�1

N

aik exp��kt� (7)

where ��k is the frequency of the kth mode of mo-
tion, and aik is the corresponding amplitude factor.
The ak is an equilibrium property characteristic of the
kth mode; it is related to the eigenvectors of A and the
initial distribution of conformations as

aik � �
j�1

N

Bik�B�1�kjPj�0� (8)

This equation follows from comparison of Equations
(3) and (7). The frequencies are usually organized in
ascending order, such that �1 � 0, and ��2 is the
frequency of the slowest mode of conformational
motion. The latter describes the global folding mode,
while the high frequency modes refer to local struc-
ture formation or conformational fluctuations. In
short, whenever the eigenvalue spectrum separates
into many fast modes, and a single slowest mode,
��2, as it always does for two-state protein folders,
the fast modes correspond to a “burst phase,” and the
slow mode corresponds to the kinetic process that is
attributed to a “transition state,” the single slowest
rate of the process.

MODELS AND NATIVE
CONFORMATIONS

In the present study, we illustrate the method using
short model chains (9-mers and 16-mers) on square
lattices. These models exhibit a two-state kinetics
according to the criterion that the time-dependent
formation (or accumulation) of the native state is well
approximated by a single-exponential decay in time.
The reason for illustrating with these simple models is
that they are the only models that can be studied
without approximation, and therefore they best illus-
trate the principles and generality of the method. The
method gives the time evolution of the complete en-
semble of N � N conformational transitions, thus
providing exact and detailed information on the mech-
anism or pathway(s) of folding. The accessible con-
formations consist of all self-avoiding walks gener-
ated on a square lattice, including both the extended
conformations that dominate the denatured state, and
compact forms confined to 3 � 3 (or 4 � 4) lattices.
Exhaustive enumeration yields N � 740 and 802,075
distinct conformations for the 9-mers and 16-mers,
respectively, excluding the conformers that are related
by symmetry or rigid body rotation. The analysis of
the complete ensemble enables us to capture the mi-
croscopic detail, the sequence–kinetics relationship,
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or the structural aspects of how the chains actually
fold.

Native Conformation

There exist three maximally compact conformations
for a 9-mer on a square lattice [Figure 1(a)–(c)]. Each
have four intramolecular contacts, labeled as A–D,
E–G, and I–L, respectively. Calculations were per-
formed for each of these conformations selected as the
native state. The conformation (a) is examined in
more detail, since this model involves both local (be-
tween monomers i and i � 3) and nonlocal contacts,
grouped in two sequentially separate domains.

The 16-mer, on the other hand, has 31 maximally
compact conformations having nine contacts each
(confined to the 4 � 4 lattice). Among these, the
conformation shown in Figure 1(d) is selected in the
present study as the native structure. This structure
may be viewed as a simplified model for a protein
comprising two domains, an �-helical and a �-sheet.
Contacts A–C are representative of helical contacts,
and G–I are �-strand contacts. These two sets of three
contacts may be viewed as local and nonlocal intrado-
main contacts, respectively, while D–F are interdo-
main contacts that assemble these secondary struc-
tures. The analysis of the time evolution of these
contacts should provide insights about the hierarchical
formation, if any, of different types of contacts during
the folding process.

ENERGETICS AND PARAMETERS

We study the passage from a broad distribution of
conformations (the denatured state) to a well-defined
native conformation using this master equation
method. For purpose of illustration, we use a Go

model.25 Folding is driven by attractive potentials
assigned to pairs of monomers making native con-
tacts. Forming a native contact involves an energy
decrease of �. Dissociating the contact increases the
energy by �; all non-native contacts have zero energy.
It is known that non-native contacts may contribute to
stability.18 However, Go models are used because
they have the same large conformational search as
proteins; they have a unique lowest energy “native”
state, and they exhibit two-state kinetics. The energy
landscape is not yet known for atomistic models but it
is possible to explore the landscape using a Go model.
Go models have proven useful in earlier folding ki-
netics studies,19,20 and their results were comparable
to those obtained with full models.19–21

Conformational transitions are assigned rate con-
stants based on intramolecular energy barriers and
friction. The energy barrier height is taken as zero for
passages to a conformation of equal or lower energy,
and as the difference in energy between the initial and
final conformations when passing to a higher energy
conformation. The frictional effect accounts for the
geometric accessibility of one conformation from an-
other. Transitions are slow between conformations
that are very dissimilar, and fast between similar
conformations. The frictional term in our rate matrix
depends on the root mean square (rms) deviation
between the bead positions of the two conformations.
The rate constant Aij for the passage between confor-
mations j and i is given by

Aij � exp��Gij/RT� � exp�����rij�
2�1/2�

	 exp��qi � qj�
H�qi, qj�/RT� (9)

where �Gij is the free energy change accompanying
the transition, qi is the number of native contacts
occurring in conformation i, H(qi, qj) is the Heavyside
step function, equal to one for qj � qi, and zero
otherwise. The �(�rij)

2�1/2 is the rms deviation be-
tween the conformations i and j evaluated after opti-
mal superposition of the two conformations, and � is
a proportionality constant dependent on frictional ef-
fect. In the absence of viscous effects, � � 0. An
alternative model would be an inverse dependence on
macroscopic viscosity, following Kramer’s rate ex-
pression, in conformity with the modeling of protein
folding as a diffusion process.22 But here we prefer
the more microscopic strategy, since it discriminates
between individual transitions on the basis of their
three-dimensional structures. Figure 2 illustrates the
time evolution of the native conformation at different
� values. As the frictional resistance increases, there is
an increase in the time elapsed for reaching the native
state; yet, the equilibrium distribution of conforma-

FIGURE 1 Three maximally compact conformations for
the 9-mer on 3 � 3 square lattice, shown in parts (a)–(c).
Each have four intramolecular contacts, labeled as A–D,
E–G, and I–L, respectively. Part (d) shows the selected
native structure (among the total of 31 maximally compact
structures) for the 16-mer. This structure may be viewed as
a simplified model for a protein comprising two domains, an
�-helical (A–C) and a �-sheet domain (G–I), while D–F are
interdomain contacts.
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tions is unaffected provided that the same Go poten-
tial parameters are used. Here, the values � � �5 RT
and � � 0.5 were adopted for the 9-mers, and 
 � �2.3
RT and � � 1.0 for the 16-mers. Bonds have unit
length. The relatively weaker potentials and higher
frictional resistances used in the 16-mers result from
physical and technical reasons: (a) physically, the
moderate driving potential for folding enables us to
examine the time evolution of contacts and possible
accumulation of intermediates when the folding ki-
netics becomes more complex; (b) technically, com-
putational overflows are avoided, which would other-
wise arise from the exceedingly broad difference in
the time scale of the fast and slow transitions.

INITIAL CONDITIONS, EQUILIBRIUM
DISTRIBUTION AND TIME STEPS

Calculations for the 9-mers are performed using a
uniform distribution of all conformations, i.e., Pi(0)
� 1/N � 1/740 for all i as initial conditions. This
represents the infinite temperature limit. The ensem-
ble converges to the Boltzmann distribution at 300 K
at long times. The equilibrium probability of the na-
tive conformation (n) is Pn(�) � 0.9848 using 
�
� �5 RT. Therefore, the stochastic process of folding
to the native state starting from a uniform distribution
of conformations is observed to investigate the differ-
ent pathways.

In the case of the 16-mers, we use the Boltzmann
distribution at 500 K as the initial distribution, rather
than, say, the infinite temperature distribution. The

choice is of little consequence. The net effect is to
reduce the high probability of conformations having
no contacts or one contact at the initial stage of
folding. The equilibrium probability of the native
conformation is 0.008 at T � 500 K, and 0.837 at T
� 300 K using � � �2.3 RT. The equilibrium prob-
ability of the energetically nearest conformation mak-
ing eight native contacts instead of nine, contact I at
chain terminus being disrupted, is 0.086 at T � 300 K.
Thus the total equilibrium probability of the two con-
formations account for more than 92% of the ob-
served molecules at equilibrium.

The master equation formalism permits us to ex-
plore the folding processes over the full range of time
scales. Time steps �t of different sizes can be used,
depending on the time scale or the stochastic process
of interest. Steps of �t � 0.01 time units were
adopted, for example, for examining the initial folding
stages in the 9-mers, while the later stages were
examined with 3–4 orders of magnitude larger time
steps, consistent with the observed distributions of
frequencies (eigenvalues of A). A broader distribution
spanning about five orders of magnitude is operated in
the case of 16-mers. This way, it is possible to observe
both the local structure formation and global folding
processes using the same methodology, which is oth-
erwise impossible in detailed-model simulations by
Monte Carlo or molecular dynamics.

KINETICS IN TERMS OF
MACROCONFORMATIONS

We analyzed our results in terms of subsets of con-
formations, in order to reach a macroscopic descrip-
tion of folding mechanisms, as experimentalists pre-
fer. In the case of the 9-mer, the conformations are
grouped into 13 subsets, according to their number
and types of native contacts: Subset O comprises the
conformations having no native contact; subsets A, B,
C, and D contain those having only one (A, B, C, or
D) native contact each, as indicated by their name;
AB, AC, BC, and BD have two native contacts; ABC
and BCD have three contacts; and finally ABCD is the
native conformation (having four contacts). We note
that a number of macroconformations such as AD,
ABD, and ACD are not accessible to the lattice ge-
ometry.

The important question that is addressed is whether
a reduced 13 � 13 model of macroconformations can
accurately describe the kinetic process extracted from
the 740 � 740 matrix of microconformations for the
9-mer. The reduced model is much faster to compute.
Reducing the size of P(t) by one order of magnitude
indeed increases the computational efficiency by two

FIGURE 2 Time evolution of native conformation at
different friction constants �. Same equilibrium is reached
in all cases with the same Go potentials; the increase in �
simply induces a time lag in reaching the equilibrium state.
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orders of magnitude, i.e., the computation time scales
with N2. The examination of the reduced set of mac-
roconformations enables us to extend the methodol-
ogy to longer chain models, whose computations are
otherwise prohibitively expensive. Furthermore, ex-
perimental data are usually interpreted in terms of
such ensemble averages, so the reduced model is a
closer descriptor of experimental results.

Based on these arguments, we construct a reduced
13 � 13 transition matrix A�, the elements of which
describe the rates of passages between the macrocon-
formations. The element accounting for the passage
from macroconformation B to A, for example, is
found by double summing the elements Aij of A over
1 � i � NA and 1 � j � NB [see Eq. (6)]. Calculations
repeated for the reduced (13-d) probability array
showed that the time evolutions of the native structure
and the native contacts are identical to those obtained
with the 740-d arrays. Hence reduction to macrostates
is warranted.

The calculations for the 16-mer were likewise car-
ried out in a reduced space of 257 macroconforma-
tion, which includes all possible distributions of na-
tive contacts except for ten having �1 native contacts.
Table I lists the total number of macroconformations
and microconformations for 16-meric structures hav-
ing the same number of native contacts.

The rms deviation �(�rij)
2�1/2 between macrocon-

formations i and j were found on the basis of the
average radii of gyration of the conformations belong-
ing to the two macroconformations. This approxima-
tion is tested with the 9-mers and verified to lead to
insignificant changes in the observed results.

DISPERSION OF TRANSITION MODES
OF THE MACROCONFORMATIONS

The eigenvalue analysis of the reduced transition rate
matrix A� allows us to visualize the type and relative
time scale of the individual modes of motion that
contribute to the folding process. The eigenvalues �k�
(2 � k � 13) of A� are representative of the frequen-
cies of the modes. And the associated eigenvectors
describe the shapes of the individual modes.

The decomposition of the transition rate matrix A
of the 9-mer gives a trimodal distribution that is
presented in Figure 3. The trimodal distribution could
be classified as (a) a burst stage at t 
 0.03 time units,
approximately, (b) intermediate times 0.03 � t 
 2
time units, and (c) long times t � 2 time units. At the
burst stage, only the fastest modes operate. This is a
rapid decay of the conformations having no native
contacts. At long times, on the other hand, only one
slowest mode contributes; this mode dominates the

FIGURE 3 Trimodal distribution of frequencies for 9-mer, found by eigenvalue decomposition of
the rate matrix A. Three time regimes—burst, intermediate, and long times are distinguishable. The
inset presents the frequency distribution for the 16-mer.

Table I The Total Number of Microconformations
(Wmic) and Macroconformations (Wmac) for the
Conformations Having the Same Number
of Native Contacts (m)

m Wmic Wmac

1 258453 9
2 81992 35
3 21024 68
4 3889 76
5 522 50
6 94 20
7 14 6
8 1 1
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single exponential accumulation of native conforma-
tion. At intermediate times, there is a superposition of
multiple modes giving rise to a more complex scheme
with a multiexponential time dependence.

The decomposition of the reduced transition rate
matrix of 16-mer is smoother and broader, as shown
in the inset of Figure 3. Approximately five orders of
magnitude difference is observed in the time scale of
the fast and slow processes. This is consistent with the
large-time scale difference observed in two-state fold-
ing experiments. The difference is due to two factors:
(a) the rate of the individual passages between mac-
rostates and (b) the multiplicity of microscopic pas-
sages between macrostates characterized by fewer
contacts.

The eigenvalues �k� (2 � k � 13) of A� (13 � 13)
for the 9-mer represent the frequencies of the modes

in the space of macroconformations, and the eigen-
vectors describe the transitions driven by that specific
mode. There are 12 nonzero eigenvalues. Each ele-
ment of a given eigenvector is associated with a given
macroconformation, the latter being indexed from 1
(macroconformation 0) to 13 (ABCD). The minima or
maxima indicate the macroconformations with the
highest activity (or transition probability).

The slow and fast modes of the 9-mer in the
reduced space of transitions are found to differ by 4–5
orders of magnitude in their frequencies . The disper-
sion obtained for the 740 � 740 transitions on the
other hand, varies over 2–3 orders of magnitude.
Comparison of the two sets shows that the slowest
modes (k � 2) have about the same frequencies
(�0.28/unit time), whereas the fastest modes differ.
This difference can be explained as follows: The fast

FIGURE 4 Shapes of selected modes k � 2, 4, 7, and 11–13 operating at different stages of the
folding of the 9-mer into the native structure ABCD. The ordinate displays the eigenvectors (modes)
and the abscissa lists the macroconformation ordered as indicated. The extrema on the curves
indicate which macroconformations are affected by the particular mode. Note that increasingly more
structured macroconformations are activated at lower frequency modes. The macroconformations
whose populations increase/decrease by the action of given mode are displayed on the right.
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transitions observed in the space of macroconforma-
tions reflect the cumulative contribution from the mul-
tiple transitions, or multiple pathways of relaxation,
simultaneously operating at the initial stages of fold-
ing, in conformity with the funnel energy landscape
view of folding starting from an ensemble of dena-
tured conformations. For example, subset O disap-
pears—and subsets C and D form—by multiple
mechanisms, via transitions between several confor-
mations at the initial stage of the folding process,
hence the apparent fast transitions (high frequencies)
are observed at short times in the space of macrocon-
formations.

Figure 4 illustrates the shapes of a few modes (k
� 2, 4, 7, 11–13). These are simply the eigenvectors
plotted against macroconformation index. The ex-
trema indicate the macroconformations that are most
strongly influenced by the action of a given mode.
Positive and negative values refer to changes in op-
posite direction, i.e., the macroconformation being
formed (or accumulated) vs those disrupted (or de-
pleted). The macroconformations whose populations
are increased/decreased due to action of given mode
are presented in Figure 4. The uppermost curve (k
� 13) describes the fastest mode, and the lowermost
(k � 2), the slowest. The former, reveals, for example,
that the fastest mode decreases the population of
subset O, while increasing those of subsets D and C.
The second fastest mode (k � 12) describes the com-
munication between subsets C and D. The third (k
� 11) reveals the depletion of C and D, and concur-
rent accumulation of A, B, and CD. These three modes
lie all in the fast transitions regime (Figure 3). The
curve k � 7, on the other hand, reflects an interme-
diate time process, mainly an equilibration in favor of
CD between all macroconformations involving two

native contacts. Finally, the lowermost two curves
refer to the slow increase in the population of confor-
mations having three native contacts (k � 4) and the
stabilization of the native structure at the expense of
subsets ABC and BCD (k � 2).

The behavior observed in Figure 4 may be indic-
ative of a general physical relationship between eig-
envectors and conformational changes. Accordingly,
each individual mode controls one or more specific
types of transitions, between particular conforma-
tions; and the transitions induced by different modes
may be assessed from the maxima and minima of the
mode shapes (eigenvectors). To further clarify the
physical meaning of the eigenvalues and the eigen-
vectors of the transition rate matrix, we consider two
simple models: series and parallel pathways that in-
volve two intermediates, I1 and I2.

The transition rate matrix that defines the series
pathway is

A � �
�k1 k�1 0 0
k1 ��k�1  k2� k�2 0
0 k2 ��k�2  k3� k�3

0 0 k3 �k�3

� (10)

and its counterpart for the parallel pathway is

A � �
��k1  k2� k�1 k�2 0

k1 ��k�1  k4� 0 k�4

k2 0 ��k�2  k3� k�3

0 k4 k3 ��k�3  k�4�
� (11)

The decomposition of these matrices gives three non-
zero eigenvalues, in each case. Let us adopt the fol-
lowing values for the rate constants for exploratory
purposes: Let the consecutive rate constants for the
forward reactions in the series model be k1 � 0.5
between D and I1, k2 � 0.1 between I1 and I2, and k3

� 0.001 per unit time between I2 and N, and the rate
constants for the respective reverse reactions k�1�
0.05, k�2 � 0.01, and k�3 � 0.0001 per unit time. The
rate constants for the forward reactions in the parallel
model are taken as k1 � 0.5 between D and I1, k2

� 0.1 between D and I2, k3 � 0.001 between I2 and N,
and k4 � 0.005 between I1 and N, and those of
reversible reactions are k�1� 0.05, k�2 � 0.01, k�3

� 0.0001, and k�4 � 0.0005 per unit time. Upon
decomposition the transition rate matrix given by Eq.
(10), the slowest and fastest modes frequencies are
found to be two orders of magnitude different in the
series model, whereas those of the parallel model
found from the eigenvalue decomposition of Eq. (11)
differ by just one order magnitude. If we just consider
the forward reactions assuming that the reversible
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reactions are negligibly slow, then the eigenvalues of the
series model will be k1, k2, and k3, and they will be
k1�k2, k3, and k4 in the parallel model (see Appendix).

Figure 5 presents the plots of the eigenvectors with
respect to the states (D, I1, I2, and N) for the two
models. In the series model [Fig. 5 (a)] we observe the
transitions between D to I1 (uppermost curve, fastest
mode, 4), I1 to I2 (middle curve, intermediate mode,
3) and I2 to N (lowest curve, slowest mode, 2). How-
ever in the parallel passages model, the transitions
from D to I1 and I2 concur at the fastest mode. The
transition from D to I1 is relatively more pronounced
because of the corresponding higher rate constant
(k1� 0.5 per unit time, as opposed to k2 � 0.1). The
curve for the intermediate mode (k � 3) shows the
accumulation in the population of I1 and the simulta-
neous decrease in the population of I2, basically the
competition between two routes, which is actually
dominated by the relative rates of depletion of the two
intermediate states. Finally, the transitions from I1 and
I2 to native state occur together at the slowest mode
unlike the series model.

The time evolution of each state in the case of a series
model (D3 I13 I23N) were computed using the rate
constants (k1 �10�2, k2 � 10�4, k3 � 10�6) starting
from fully unfolded state where at time � 0 , PD(0) � 1
and PI1(0) � PI2(0) � PN(0) � 0. We observe sequen-
tial transitions along the pathway [Figure 6(a)]. This

series model of sequential intermediates has been re-
ferred to as the Staircase Model.23 The decrease in the
population of I1 precedes the increase in I2, while the
formation of the native state occurs at the expense of
state I2, in conformity with the middle and lower curves
in Figure 5(a). On the other hand, the time evolutions of
these states exhibit a different behavior for a parallel
model (D 3 I1 3 N and D 3 I2 3 N) when the
computations were performed using the rate constants
(k1 � 10�2, k2 � 2 � 10�2, k3 � 10�3, and k4 � 2
� 10�3 per unit time) with the same initial conditions as
the series model [Fig. 6(b)]. The increase and the de-
crease in the population of I1 and I2 occur at same time
interval. However, the change in the population of I2 is
larger than that of I1 due to the higher rate constant for
the transition D to I2. The formation of the native state
starts as I1 and I2 are depleted. The detailed formulations
for the time evolution of the denatured, intermediate and
native states in the case of series and parallel models are
presented in the Appendix.

In the case of a broader ensemble of conforma-
tions, on the other hand, the time evolution of differ-
ent macroconformations can obey significantly more
complex forms.24 Figure 7 displays, for example, the
time evolution of the macroconformations computed
for the 16-mer. The conformations BCDEGHI, AB-
CDEFG, and ABCGHI all fill up and empty out over
the same time course, and hence are not sequential,

FIGURE 5 Shapes of eigenmodes in descending order for the series (a) and parallel (b) models
having two intermediates. The transitions follow a sequential order in the series model, while
simultaneous transitions to both intermediates (I1 and I2) are observed at the fastest mode in the case
of parallel passages. Likewise, the transitions I1 and I2 to N occur simultaneously at the slowest
mode in part (b).
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but parallel. Moreover, Figure 7 shows another fea-
ture of parallel processes: a slow step is not simply
one-contact-more-native than a faster step. There is a
fast hidden intermediate state, ABCDEF, which is a
simple precursor of ABCDEFG, but it is not a pre-
cursor of BCDEGH or ABCGHI.

CONCLUSIONS

We describe the master equation method for analyz-
ing protein folding kinetics, and show how it can be

used to identify the intermediate states, and the mac-
rostates that are transiently stabilized as the “transi-
tion state,” even for nonclassical landscapes such as
folding funnels. This method is rigorous and requires
no assumptions.

We illustrate the method using a simple Go model
that can be analyzed exactly. We find that folding pro-
ceeds via a large multiplicity of microscopic routes. The
microscopic chain conformations can be conveniently
collected into macrostates, resembling those in mass-
action models, and classical pathways can be defined in
terms of sequences of those macrostates.

FIGURE 6 Time evolution of each state (a) for the sequential scheme D3 I1 3 I23 N, using
the rate constants 10�2, 10�4, and 10�6/unit time for the respective steps D 3 I1, I1 3 I2 and I2

3 N; and (b) for the parallel scheme D3 I13 N and D3 I23 N, using the rate constants 10�2,
2 � 10�2, 10�3, and 2 � 10�3/unit time for the respective steps D 3 I1, D 3 I2,I2 3 N, and I1

3 N, with the initial conditions PU(0) � 1 and PI1(0) � PI2(0) � PN(0) � 0.
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The transition state can be usually assessed from
the shape of the eigenvector corresponding to the
slowest nonzero mode(s) of relaxation. This would be
a state whose depletion at long times is accompanied
by formation of the native state. Furthermore, we
should expect this state to be temporarily stabilized
(or accumulated) preceding the passage to the slowest
mode that completes the folding process. Based on
these qualitative features, using the rate constants
defined in the text, the respective states I2 and I1

appear as the momentarily stabilized transition states,
preceding the formation of state N, in the respective
cases of the simple parallel and series models with
two intermediate states [see Figure 5(a) and (b)]. In
the case of more realistic models with multiple con-
formations [Figure 6(b)], on the other hand, the as-
sessment of the transition state becomes more com-
plicated, because the transition state is a broad ensem-
ble of conformations, not a single well-defined
structure. Focusing on the reduced set of macrocon-
formations that are characterized by well-defined sub-
sets of native contacts, appears as a useful conceptual
framework for analyzing the dynamics of folding
process in this case.

APPENDIX

The set of differential rate equations for each state in
the series model of D 3 I1 3 I2 3 N with rate
constants k1, k2 and k3 is

d�D�/dt � �k1�D� (A.1)

d�I1�/dt � k1�D� � k2�I1� (A.2)

d�I2�/dt � k2�I1� � k3�I2� (A.3)

d�N�/dt � k3�I2� (A.4)

The simultaneous solution of the above set gives the
time evolution of each state as

�D� � �D�0e
�k1t (A.5)

�I1� � �D�0

k1

k2 � k1
�e�k1t � e�k2t� (A.6)

FIGURE 7 Time evolution of substructured 16-mer macroconformations. The peaks indicate the
macroconformations that are accumulated before completion of folding. The conformations BC-
DEGHI, ABCDEFG, and ABCGHI appear and disappear over the same time course, in a parallel
manner.
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�I2� � �D�0

k1k2

k2 � k1
� 1

k1 � k3
�e�k3t � e�k1t�


1

k2 � k3
�e�k2t � e�k3t�� (A.7)

�N� � �D�0 � �D� � �I1� � �I2� (A.8)

In the case of the parallel model

with the rate constants k1(D3 I1), k2(D3 I2) k3(I23
N), and k4(I2 3 N), the set of differential rate equa-
tions becomes

d�D�/dt � ��k1  k2��D� (A.9)

d�I1�/dt � k1�D� � k4�I1� (A.10)

d�I2�/dt � k2�D� � k3�I2� (A.11)

d�N�/dt � k4�I1�  k3�I2� (A.12)

and the time evolution of the states is obtained from

�D� � �D�0e
��k1�k2�t (A.13)

�I1� � �D�0

k1

k4 � �k1  k2�
�e��k1�k2�t � e�k4t� (A.14)

�I2� � �D�0

k2

k3 � �k1  k2�
�e��k1�k2�t � e�k3t� (A.15)

�N� � �D�0 � �D� � �I1� � �I2� (A.16)
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