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Abstract

Do two-state proteins fold by pathways or funnels? Native-state hydrogen exchange experiments show
discrete nonnative structures in equilibrium with the native state. These could be called hidden intermediates
(HI) because their populations are small at equilibrium, and they are not detected in kinetic experiments. HIs
have been invoked as disproof of funnel models, because funnel pictures appear to indicate (1) no specific
sequences of events in folding; (2) a continuum, rather than a discrete ladder, of structures; and (3) smooth
landscapes. In the present study, we solve the exact dynamics of a simple model. We find, instead, that the
present microscopic model is indeed consistent with HIs and transition states, but such states occur in
parallel, rather than along the single pathway predicted by the sequential stabilization model. At the
microscopic level, we observe a huge multiplicity of trajectories. But at the macroscopic level, we observe
two pathways of specific sequences of events that are relatively traditional except that they are in parallel,
so there is not a single reaction coordinate. Using singular value decomposition, we show an accurate
representation of the shapes of the model energy landscapes. They are highly complex funnels.
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There are currently two main models of two-state protein
folding kinetics: the pathway model (Pande et al. 1998;
Englander 2000; Rumbley et al. 2001) and the parallel
routes, or funnel model (Bryngelson et al. 1995; Socci et al.
1998; Klimov and Thirumalai 2001). It has recently been
argued (Englander 2000; Rumbley et al. 2001) that new
experimental observations of the existence of “hidden in-
termediates” (HI) are not consistent with the funnel model.
We explore this issue here using a model in which we can
study the dynamics in a rigorous and complete way. The
present work indicates an alternative to traditional pathway
explanations for two-state protein folding kinetics.

Small globular proteins often fold very quickly, in tens of
microseconds (Pande et al. 1998; Englander 2000), and very
simply, following single-exponential (called two-state) ki-
netics. Single-exponential processes are typically described
by mass-action models (Ikai and Tanford 1971; Tsong et al.
1971; Dill and Chan 1997; Englander 2000; Rumbley et al.
2001;). A single-exponential decay in both forward (fold-
ing) and backward (unfolding) directions can be described
by two states, unfolded (U) and native (N),

U →← N ( I)

More complex kinetics requires additional mass-action
symbols. To explain two-exponential folding requires three
mass-action states. For example, if the third state is labelled
I (intermediate), then a possible model is

U → I → N ( II)
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and larger numbers of exponentials could be described by a
sequential pathway model

U → I1 → I2 → I3 . . . → N ( III)

where each intermediate state Ij represents an additional
observed relaxation process in the experiments. We call
these macroscopic models because their states (U, I1, I2, …)
are ensemble averages over microscopic chain conforma-
tions. Macroscopic models do not say which chain confor-
mations correspond to each mass-action symbol (such as Ij

or TS [transition state]). They cannot describe how the mi-
croscopic rate processes depend on amino acid sequence or
external conditions. They do not predict the sequences of
microscopic chain folding events.

Microscopic insights require microscopic models: statis-
tical mechanical computer simulations (Sali et al. 1994;
Miller and Dill 1995; Pande and Rokhsar 1999a; Dinner et
al. 2000; Li et al. 2000), Langevin dynamics of continuum
models with different friction coefficients (Veitshans et al.
1997; Thirumalai and Klimov 1999; Klimov and Thirumalai
2000), and molecular dynamics (MD) simulations of un-
folding (Daggett et al. 1996; Lazaridis and Karplus 1997;
Pande et al. 1998; Alonso and Daggett 2000) or refolding
starting from transition states (Pande and Rokhsar 1999b).
Microscopic models have led to the view that the fast-fold-
ing proteins fold up along funnel-shaped energy landscapes.

But it has been argued that the microscopic models imply
“an unlimited number, essentially a continuum, of interme-
diates and paths” (Rumbley et al. 2001). It has been argued
that such astronomical numbers of paths are inconsistent
with experiments showing a small number of discrete near-
native structures. We call these structures HIs, for the fol-
lowing reasons. First, they are not true thermodynamic in-
termediates because these nonnative structures, which are
observed by native-state hydrogen exchange experiments,
are never the dominant population under equilibrium con-
ditions (Bai et al. 1995). Second, they escape detection in
kinetics experiments. Folding is monoexponential, meaning
that no intermediates are observed in mass-action kinetics
models. Hence, we call these intermediate states “hidden”.

The fundamental questions are (1) what are the HIs that
are observed in experiments, and (2) are they inconsistent
with funnel models? In broader terms, the essence of the
issue is how macrostates (U, I1, I2, …) are related to the
microscopic conformations of a chain. Neither experiments
nor typical computational modeling has determined this re-
lationship. Here, through a complete and exact treatment of
the dynamics, we can do so in a simple folding model.

Model and parameters

We use a two-dimensional Go model. An attractive poten-
tial � is assigned to every pair of monomers making native

contacts. All other contacts have zero interaction energy. To
mimic the weakening of hydrophobic interactions by dena-
turants or temperature, we vary the value of �/kT. High
temperatures denature the model proteins, whereas low tem-
peratures stabilize the folded state, following Boltzmann’s
law. We generate the complete sets of all self-avoiding con-
formations of 9-mers and 16-mers on a square lattice.

Collecting microscopic conformations together
into macroconformations

The microconformations are the individual lattice confor-
mations, of which there are N � 740 for the 9-mers and
N � 802,075 for the 16-mers, excluding the conformers
that are related by symmetry or by rigid body rotation.
Macroconformations (or macrostates) are ensembles of mi-
croconformations that are specified by particular sets of
native contacts. For example, the 9-mers have M � 13 mu-
tually exclusive macroconformations. If we designate each
of them by the corresponding list of contacts, the macro-
conformations for the structure in Table 1a are A�, B�, C�,
D�, A�B�, A�C�, B�C�, B�D�, C�D�, A�B�C�, B�C�D�,
A�B�C�D�, in addition to the set O of conformations having
no native contacts. A�D� and A�B�D� are not accessible be-
cause of lattice geometry constraints. We define a macro-
path, or macroroute, as a time series of macroconforma-
tions. Our interest here is in relating micropaths, the indi-
vidual chain trajectories in folding, to macropaths, the mass
action–like description of a series of folding steps.

The 16-mer shown in Figure 1 has 267 macrostates. Table
2 lists the dominant ones among these, that is, those having
relatively high statistical weights, Wmic. Wmic is the number

Table 1. Stabilization time (�) for the native contacts of
three 9-mers

Native structure Type of native contact Stabilization time (�)

(a)
A� 3.40

B� 2.19

C� 1.22

D� 2.25
(b)

E� 1.16

F� 2.19

G� 2.20

H� 1.16
(c)

I� 4.95

J� 2.57

K� 1.12

L� 0.86
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of microconformations in each macroconformation. The
complete list of macroconformations is available as supple-
mentary material. Table 3 lists the total numbers, Wmic and
Wmac, of the respective microconformations and macrocon-
formations of the 16-mers having m native contacts.

Master equation formalism

To determine the complete kinetics, we solve a master equa-
tion, the full coupled kinetics among all 740 or 802,075
conformations, as described in Materials and Methods. The
virtues of the master equation approach are that (1) it allows
us to explore all time scales, differing by many orders of
magnitude; (2) it gives us the complete and exact kinetics,
without limitations owing to incomplete sampling methods;
and (3) it requires no thermodynamic assumption, such as in
transition-state theory, in which the population of the TS is
assumed to be in equilibrium with the reactant state. Avoid-
ing this assumption is essential here, because we believe
two-state protein folding is so fundamentally different from
how it appears in the traditional single reaction–coordinate
treatments that it is essential to learn about the nature of
barriers and intermediates rather than to make assumptions
about them.

There are other studies in this area. Master equation for-
malisms have been adopted by Scheraga and coworkers (Ye
et al. 1999) for analyzing the folding of a subset of 50
conformations (local energy minima) generated for staphy-
lococcal protein A, and by Eaton and coworkers for mod-

eling the formation of a �-hairpin (Munoz et al. 1998). A
well-defined folding pathway was reported (Pande and
Rokhsar 1999a) for a 48-mer on a three-dimensional cubic
lattice and on well-defined TS conformations having a com-
mon core structure. Likewise, a preferred unfolding path-
way was observed by Lazaridis and Karplus (1997) in the
multiple MD trajectories of chymotrypsin inhibitor 2 (CI2),
a classical example protein that obeys two-state kinetics,

Fig. 1. Time evolution of native contacts for the 16-mer. The time-depen-
dent probability PX(t) of contacts X � A–D, G, I is shown. The inset shows
the plot of ln{[PN(t) − PN(�)]/[PN(0) − PN(�)]} versus time where PN(t) is
the probability of native state. The close fit (correlation coeffi-
cient � 0.997) to a line shows that the observed kinetics is single expo-
nential.

Table 2. Dominant macroconformations for 16-mers, and their
statistical weights, Wmic

m � 2 Wmic m � 5 Wmic

1 AB 13004 1 ABCDE 51
2 AC 10391 2 ABGHI 47
3 AG 9545 3 ACGHI 71
4 BC 9291 4 BCDEG 38
5 GH 6207 5 BCGHI 35
6 CG 5264 6 ABCGH 7
7 BG 5189 7 ABCDG 16

m � 3 Wmic m � 6 Wmic

1 ABC 1867 1 ABCDEF 39
2 GHI 1558 2 ABCGHI 7
3 ABG 1405 3 BCDEHI 5
4 AGH 1241 4 BCDGHI 5
5 ACG 1139 5 CDEGHI 4
6 BCG 1025 6 ABCDEG 3
7 BCD 691 7 ABCDEI 3

8 ABCDGI 2

m � 4 Wmic

1 BCDE 503 m � 7 Wmic

2 AGHI 315 1 BCDEGHI 5
3 ABCG 207 2 ABCDEFG 3
4 ABGH 181
5 CGHI 178 m � 8 Wmic

6 BGHI 172 1 ABCDEFGH 1
7 ACGH 141

Table 3. Statistical weights of microconformations (�mic) and
macroconformations (�mac) with m native contacts for
the 16-mera

m �mic(m) �mac(m)

0 543,621 1
1 176,461 9
2 60,968 35
3 17,135 68
4 3,367 76
5 428 50
6 80 20
7 13 6
8 1 1
9 1 1
Total 802,075 267

a �mic is the sum over the Wmic values of all �mac (m) macrostates.
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indicating that a preferred pathway can be compatible with
a funnel-like average energy surface, as had been previously
noted from lattice model simulations (Miller et al. 1992).
This observation was interpreted as a reconciliation of the
old and new views of folding. The TS region for CI2 was
shown to involve only 25% of native contacts (Lazaridis
and Karplus 1997). The off-lattice 46-mer model (Dok-
holyan et al. 2000) also revealed that only a few well-
defined contacts formed the completion of folding in the TS
drive with high probability. Galzitskaya and Finkelstein
(1999) on the other hand, found TS structures including up
to three fourths of residues.

Results and Discussion

Time evolution of native contacts

To validate this model, we must first show that the folding
kinetics is two-state, that is, that the native conformation
emerges via a single-exponential kinetic process. The inset
in Figure 1 shows this for the 16-mer native structure. The
linearity of the semi-log plot has a correlation coefficient of
R � 0.997, although some residuals are observed. Results
from the 9-mers also show single-exponential behaviour on
a macroscopic scale. This observable single exponential
comes from a multiexponential process that has a separation
of time scales. For simplicity of terminology, we refer to it
as monoexponential.

Figure 1 also shows the remarkable heterogeneity of the
kinetics of the underlying processes of contact formation.
To make this more quantitative, we calculate a characteristic
stabilization time, �(X),

��X� = � �Px�t� − Px������Px�0� − Px���� dt

over 0 < t < �. PX(t) is the fractional population of contact
X at time t. Stabilization times �(X) for the 9-mers are given
in Table 1. The main conclusion is that folding begins with
the most local contacts and proceeds toward less local ones,
consistent with a zipping mechanism (Dill et al. 1993;
Fiebig and Dill 1993). For example, Table 1 shows that
�(L) < �(K) < �(J) < �(I). Helical contacts at chain termini
tend to form at the burst stage of folding, but they can be
rapidly reopened, so their effective stabilization time is
longer than that of inner helical contacts. �-Strand or inter-
domain contacts, on the other hand, accumulate steadily,
and can show a shorter characteristic times compared with
those of the reversible helical contacts. The 16-mer we have
studied here has two domains, an �-helical and a �-sheet.
Helix contacts are A thorough C, and the �-strands contacts
are G through I. These six contacts may be interpreted as
intradomain contacts, whereas D through F are interdomain
contacts. The characteristic times show the order

�(C) ≈ �(G) < �(D) < �(I) < �(A) < �(H) < �(E) < �(B) < �(F).
The core local contacts (G and C) form first, whereas A,
involving a chain terminus, is slower.

The macrodescription: Structure emerges as sequences
of events

Figure 2 shows how structure emerges along macroroutes.
It shows that the folding process can be described as a set of
macroscopic events, even though there is a broad ensemble
of microscopic routes. The figure shows the time-delayed
joint probabilities, P(X, t1; Y, t2), of macroconformations X
and Y, observed at various time windows (t1, t2) during the
folding of the 9-mer shown in Table 1a. The abscissa and
ordinate are the original (X) and final (Y) macroconforma-
tions. The color code gives the probability of each time-
delayed joint event.

In short, Figure 2 gives the following macrodescription of
folding for the 9-mer: Helical turn D� forms first, then he-
lical unit C� zips up, and then the �-sheet contacts B� and A�
zip up on the helix that has already formed. Hence, although
there are a large number of microroutes between the indi-
vidual chain conformations, there is a relatively well de-
fined description of a dominant macroscopic pathway. This
was first noted in earlier simulations (Miller et al. 1992).

Moreover, we observe kinetic cooperativity. Given con-
tact C�D�, the native conformation A�B�C�D� emerges di-
rectly, without any substantial population of the intermedi-
ate structures, A�B�C� or B�C�D�. The contacts A� and B�
form almost simultaneously, once C�D� has formed.

Macrokinetics is different from microkinetics

The macro and micro descriptions of the folding kinetics are
very different. For example, the number of transitions per
unit time between two microstates, say from conformation
j to i, is given by the microscopic quantity kij. But the
numbers of transitions between two macrostates is a sum of
the rates over all microroutes. There is only one microroute
between two microstates, but there are many microroutes
between two macrostates. The multiplicity depends on the
initial and final macrostates. Figure 3 illustrates this point
for the 16-mer. Consider one macrostate having m native
contacts, and the next macrostate along the folding pathway,
having m+1 native contacts. C (m+1| m) is the transition rate
from m to m+1. In Figure 3, the transition probabilities (or
rates) corresponding to different pairs of macrostates (ab-
scissa and ordinate) are shown by the color code, from red
through blue in order of decreasing transition rates. The
individual macrostates are rank-ordered along the x- and
y-axes in order of increasing numbers of microstates, Wmic

(where S/k � Wmic is the conformational entropy; Table 2).
Figure 3a shows a uniform gradient of red at the top left

to blue at the bottom right. The most frequent transitions
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Fig. 2. Joint probabilities P(X, t1; Y, t2) of macroconformation X (abscissa) at time t1 and macroconformation Y (ordinate) at time t2,
calculated for various time intervals t1 � t � t2. See the color code on the right bar for the range of the probability values. The
macroconformations stabilized at different stages are explicitly displayed on the left margin, along with their instantaneous probabili-
ties.

Ozkan et al.

1962 Protein Science, vol. 11



(darkest red) are among the highest conformational-entropy
macrostates, namely, those having high Wmic values (see
Table 2). That is, chain conformations undergo rapid and
frequent transitions broadly traversing the tops of funnel
energy landscapes, but deeper on the landscape, the chains
are more “stuck”, so transitions are slower and more lim-
ited. A chain loses little entropy on forming local contacts;

it loses much entropy in forming nonlocal contacts. Hence,
the most probable transitions are those involving the most
localized contacts; this has been called zipping (Dill et al.
1993; Fiebig and Dill 1993).

As we move toward more native-like conformations,
from Figure 3, a through d, the rates become less dependent
simply on Wmic and more dependent on the complexity of

Fig. 3. Transition rates C (m + 1 | m) between macroconformations having m (abscissa) and m + 1 (ordinate) native contacts, for m � 2,
3, and 4, shown in the maps (a–c). Map d shows the transitions to macroconformations with 7, 8, and finally 9 (all) contacts, starting
from m � 5. Macroconformations are assigned serial indices in the order of decreasing conformational entropies (see Table 2). The
color code, red-orange-yellow-green-cyan-blue, refers to decreasing transition probabilities. The uniform shading in a and b indicates
the strong correlation between transition probabilities and conformational entropies. The spots in c signal the interference of specific
interactions, which become more pronounced in d.

Fast-folding protein kinetics
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the specific native structure (Bryngelson et al. 1987). Figure
3d shows several transitions involving lower entropy con-
formations that have higher rates.

There is a dichotomy between micro and macro descrip-
tions of kinetics. Figure 3a shows the huge multiplicity of
microscopic pathways of folding, whereas Figures 2 and 4
show that this can be described as simple specific macro-
scopic sequences of events.

The macroscopic kinetics involves two parallel
pathways

Figure 4 shows the dominant macrostates along the two
main macroroutes. There are two bottleneck macrostates:
ABCDEF, which has all the helical and interdomain con-
tacts, and BCGHI, in which the helical and sheet domains
are practically formed (except for the terminal contact A)
but not yet assembled. Folding proceeds in parallel through
these two macroconformations. They are bottlenecks not
because their intrinsic rates, kj, are small but because there
are fewer exit routes than entrance routes from those con-
formations (Shea et al. 1999). Hence, folding stalls at those
conformations. Macropath I involves the macroconforma-
tions (ABCDE and ABCDEF) that have high Wmic values
(Table 2) and high fluxes (Fig. 3). This macropath has the
greatest individual flux of any one macropath. Even so, the
overall speed of folding is even greater than through this
route alone, because there is also flow through other mac-
roroutes (Ozkan et al. 2001).

We observe hidden kinetic intermediates

What is the evidence for HI states in folding kinetics? Ac-
cording to mass-action schemes I through III, true kinetic
intermediates exist only when multiexponential kinetics is
observed. In essence, in the simplest case of two exponen-
tial rate processes, one rate coefficient would describe the
“pouring” of molecules from U to I to fill up I, and the other
rate coefficient would describe the “emptying of I into N.”
But clearly, for single-exponential kinetic processes, only
mass-action scheme I applies, meaning that there is no ob-
servable intermediate state. Englander has interpreted his
data on cytochrome c in terms of what we call HIs (Bai et
al. 1995; Englander 2000; Rumbley et al. 2001). These are
macrostates that fill up and then empty out, even though the
overall folding kinetics is only monoexponential.

Figure 5 shows the observation of HIs in our model. It
shows that a jump to folding conditions causes certain mac-
rostates to fill up then empty out as folding proceeds, even
though the overall folding follows monoexponential kinet-
ics.

HIs are in parallel, not in series

There is a key difference, however, between the HIs that we
observe and those proposed by Englander in his sequential
stabilization model. Englander proposes that the HIs occur
in series along the reaction coordinate D → I1 → I2 →
I3 → N (Fig. 6a), whereas ours are in parallel. Also, the
progressively slower hydrogen exchange (HX) rates mea-
sured under native conditions have been ascribed to increas-
ingly unfolded forms located along an energetically uphill
staircase, down which the conformations might step in their

Fig. 4. Two parallel macropaths I and II observed in the folding kinetics
of the investigated 16-mer. The macropath I on the left is the fastest
macropath and dominates the macroscopic folding rate.
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folding sequence (Englander and Kallenbach 1983). This
series model of sequential intermediates has been referred to
as the staircase model (Englander 2000).

In a series process, the emptying of one bin, indicated as
a drop in the population of I2 over a certain time interval,
will approximately coincide with the filling of the next bin,
an increase in the population of I3. See, for example, Figure
6b showing the time evolution of the states U, I1, I2, and N
for the sequential transition U → I1 → I2 → N. The curves
are calculated for a fully unfolded state at t � 0—that is,
PU(0) � 1 and PI1(0) � PI2(0) � PN(0) � 0—using the
respective rate constants k1 � 10−2, k2 � 10−4 and
k3 � 10−6/unit time for the three sequential steps. Figure 5
shows, however, that conformations BCDEGHI, ABC-
DEFG, and ABCGHI all fill up and empty out over the same
time course and, hence, are not sequential. Moreover, Fig-
ure 5 shows another feature of parallel processes: Faster
processes are not necessarily precursors of slower ones.
That is, a slow step is not simply one contact more native
than a faster step. The fast hidden intermediate is ABCDEF,
which is indeed a simple precursor of ABCDEFG, but it is
not a precursor of BCDEGH or ABCGHI.

Denaturants or temperature affects the time
of appearance of HIs

Figure 7 shows the transient intermediates (or HIs) on a
log-time scale. It shows that the time window of appearance
of the HIs is determined by the driving force for folding,

such as the concentration of denaturant, but controlled here
by changing the temperature. For example, C�D� reaches a
population of 0.39 during the burst stage of folding when
�/RT � −5, which is significantly higher than its original
and equilibrium populations. Such a transient accumulation
might be attributed to being trapped in a local minimum
along the folding pathway. The escape from this subset is
faster at higher temperatures, as expected from classical rate
models.

We tested another aspect of the sequential stabilization
model. The existence of multiple HIs implies that there must
be multiple “hidden transition states”, which are the barriers
between the HIs. We can test for them by computing a
quantity we call the nucleation power of a conformation.

Fig. 5. Time evolution of substructured 16-mer macroconformations. The
peaks observed indicate the tendencies to accumulate before complete
folding.

Fig. 6. (a) Folding profile for apparent two-state folding proteins, com-
posed of an initial rate-limiting barrier (TS) succeeded by sequentially
stabilized intermediates, proposed by Englander and coworkers (Englander
and Kallenbach 1983;Rumbley et al. 2001). (b) Time evolution of the
probability of the states U, I1, I2 and N for the sequential scheme U 〉 I1 〉 I2〉 N,
using the rate constants 10−2,10−4, and 10−6/unit time for the respective
steps U 〉 I1, I1〉 I2, and I2〉 N, and the initial conditions PU(0) � 1 and
PI1

(0) � PI2
(0) � PN(0) � 0.
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Nucleation power measures the tendency to act
as a folding nucleus

Computational studies indicate that proteins can have mul-
tiple folding nuclei (Klimov and Thirumalai 2000, 2001).
We are interested in quantitating the concept of folding
nucleus. Suppose you start from the unfolded state, initiate
folding conditions at time t � 0, then measure the folding
time, �0, that is, the time required to reach the native state.
Now if you started from a conformation having m native
contacts, instead of from the unfolded state, then the time to

fold would be �m. The quantity ��m/�0 � (�m−1 − �m)/�0

gives a measure of the nucleation power of contact m along
this macroroute. If (��m/�0) � 0, it means that the addition
of contact m does not accelerate folding, so m is not a
nucleating contact. At the other extreme, ��m/�0 � 1 im-
plies �m−1 � �0 and �m ≈ 0 (because �m−1 and �m can only
range from 0 to �0). This represents the classical limit at
which there is a single rate-limiting step, the addition of
contact m, and all subsequent folding steps are instanta-
neous. According to the sequential stabilization hypothesis,
the quantity, ��m/�0 plotted against the reaction coordinate
should have a series of peaks and valleys, corresponding to
the linear sequences of hills and valleys in Figure 6a.

There are hidden transition states

Figure 8 shows the ��m/�0 values for three different mac-
ropaths in our model, plotted against the midpoints between
m and m − 1. We note three main conclusions. First, the
macroroute AG-ACG-ACGH-ABCGH-ABCGHI-BCGHIDE-
native is well described as a classical nucleation process.
There is a single nucleating contact. It occurs very late in
folding: It is the step from the sixth to seventh contact, out
of nine contacts in the native state. Second, the macroroute
BC-BCD-BCDE-ABCDE-ABCDEF-ABCDEFG-native is
heterogeneous (Klimov and Thirumalai 1998, 2000). There
is no single nucleating contact. Both the steps from five to

Fig. 7. Time evolution of the partially folded substructures B�C� and
B�C�D�, and native structure A�B�C�D�, for the 9-mer displayed in Table
1a, calculated for the indicated �/kT ratios. The accumulation of the inter-
mediates is diminished at higher temperatures (or weaker intramolecular
interactions).

Fig. 8. Nucleation power of native contacts along particular macroroutes,
indicated by the incremental change in folding time �m succeeding the
formation of each contact m, relative to the overall folding time �0. The
ratio ��/�0 � (�m−1 − �m)/�0 is shown for each passage from m − 1 to m
contacts along four different macroroutes.
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six and from seven to eight contacts give equivalent en-
hancement of folding speed. Hence, this is not a classical
nucleus. The occurrence of peaks and valleys is consistent
with hidden transition states. Third, it is clear that different
macroroutes have different folding mechanisms, not all of
which involve hidden transition states.

Displaying energy landscapes using singular value
decomposition

Free energy landscapes for protein folding are complex and
have a high dimensionality. They cannot be visualized in
three-dimensions. So cartoons have generally been used to
illustrate principles of landscape shapes (Dill and Chan
1997), or certain preferred coordinates can be chosen for
representing landscapes (Erman et al. 1997; Chen and Dill
2000).

In the present study, we instead use a better method,
based on principal components analysis (Kitao and Go
1999; Doruker et al. 2000; Garcia and Sanbonmatsu, 2001).
The 16-mer conformations are organized in a 32 × M ma-
trix, R. Each column of R represents a given conformation,
and M is the number of conformations included for con-
structing the energy landscape. The singular value decom-
position of this rectangular matrix yields a new matrix of the
same size, say R�, which is just the representation of R in
the new (normal) space. Each column, then, designates the
coordinates of a given conformation along the normal (prin-
cipal) axes. Using the dominant two directions, that is, the
first two rows of R�, we can express the M conformations by
single points on a plane spanned by the first two principal
axes. The corresponding equilibrium energies determine the
energy surface. Figure 9, a through c, shows a progression
of increasingly narrowed representations of conformational
space around the native structure.

Figure 9a shows the energy surface for the subset
(M � 523) of 16-mer conformations having more than four
native contacts (m > 4). The shape of the landscape is com-
plex even for this relatively small subset of conformations.
The native conformation, forming the deepest minimum, is
labeled N. The surface also has several local minima. Inter-
estingly, there is a broad minimum at a distant position with
respect to the native conformation (on the right), and a deep
channel that is likely to serve as a macropath for the passage
between this relatively stable region and the native state.
Examination of the conformations that lie along this channel
shows the preponderance of the macrostates ABCDEF and
ABCDEFG, that is, the native-like conformations reached
via the macropath I.

Figure 9b shows the energy surface for the microconfor-
mations (M � 95) having more than five native contacts.
Again, the native state is the deepest minimum, and the
second deepest minimum is the conformation ABCDEFGH.

The broad minimum closest to these two minima includes
the conformations that comply with the macrostates BCDE-
GHI and ABCDEFG. The macrostate BCDEGHI is com-
posed of five conformations (Table 2). Figure 9b also shows
traps: The macrostates CDEFGHI, ADEFGHI, ACEFGHI,
and ABCDEHI are not readily convertible to the native con-
formation, despite having seven native contacts. Contacts
must be broken first before they can reach the native struc-
ture.

Figure 9c shows only conformations having seven native
contacts, which gives a smooth funnel shape near the native
state. If more than six native contacts are made, folding is
fast and simple along this landscape. We note that although
folding in this model is fast, multichannel, and funnel-like
in the sense that conformations are fed by higher energy
conformations and pour into lower energy ones, the shapes
of these landscapes can be quite complex.

Discussion

We study a simple model of fast protein folding kinetics,
chosen because it has the minimal necessary ingredients for
obtaining microscopic insights about two-state protein fold-
ing: single-exponential kinetics and a single native state in
an otherwise large conformational space of self-avoiding
polymer conformations. It is intended for the exploration of
general principles, not for exploring atomic details. We use
a master equation formalism, so that the kinetics can be
studied rigorously and without assumptions about the mi-
croscopic nature of transition states or intermediates.

We find that folding proceeds via a large multiplicity of
microscopic routes. But we find that the microscopic chain
conformations can be collected into macrostates, resem-
bling those in mass-action models, and that classical path-
ways can be defined in terms of sequences of macrostates.
For one monomer sequence, we find two main macropath-
ways: One involves rapid helix formation, and the other
involves a slower �-sheet formation, like that found in hen
egg lysozyme (Matagne et al. 1997, 1998). In agreement
with our calculations, the rate of folding of lysozyme de-
pends on the population of the �-domain intermediates
(Matagne et al. 2000). We find that the sequences of mac-
rostates can be described as a zipping process (Dill et al.
1993; Fiebig and Dill 1993) in which local contacts form
early, particularly ones inside the core of the molecule, fol-
lowed by nonlocal contacts.

We observe HIs: macrostates that fill up then empty out
during the folding process, even though the overall kinetics
is monoexponential, so these intermediates are not observ-
able in the kinetics. A main conclusion from this work is the
demonstration that increasingly structured nonnative states
can contribute to two-state protein folding kinetics, even
when not occurring along a single sequential pathway.
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Fig. 9. Energy landscape obtained by projecting the conformations onto the two-dimensional normal space found by the singular value
decomposition of the 32-dimensional vectors defining the individual conformations. Parts a, b, and c refer to subsets of conformations
having more than m � 4, 5, and 6 native contacts, respectively. The native conformation is labeled as N.
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Materials and methods

We consider model proteins having N accessible conformations.
The time evolution of these conformations is described by the
master equation (Oppenheim et al. 1967; Bahar 1989; Gardiner
1990; Van Kampen 1990)

dP�t��dt = A P�t� ( 1)

where P(t) is the N-dimensional vector of the instantaneous prob-
abilities of the conformations, and A is the N × N transition (or
rate) matrix describing the kinetics of the transitions between these
conformations. The simultaneous solution of the above set of N
differential equations gives the time-dependent probability of oc-
currence of the N conformations vector, P(t):

P�t� = B exp �	t� B− 1 P�0� = C�t� P�0� ( 2)

where exp{	t} is a diagonal matrix, B is the matrix of the eigen-
vectors of A, and B−1 is the inverse of B. C(t) is the conditional or
transition probability matrix. C(t) fully describes the time depen-
dence of N × N transitions. The time-delayed joint probability of
conformations i at time t2 and j at time t1 is found from the product
C(i,t2 − t1| j,0)Pj(t1). Combination of these probabilities in

P�A, t2; B, t1� = 	
i= 1

NA

	
j= 1

NB

C�i, t2 − t1 | j, 0�Pj �t1� ( 3)

yields the time-delayed joint probability P(A,t2; B,t1) of the mac-
roconformations A and B comprising NA and NB conformations,
respectively.

Rate matrix

The conformational transition rates (elements of A) are assumed to
depend on intramolecular energy barriers and on the frictional
resistance of the solvent. The energy barrier is zero for passages to
conformations having an equal or lower energy, and is propor-
tional to the energy difference between the initial and final con-
formations for passages to a conformation of higher energy. The
friction factor ensures that large conformational transitions are less
frequent than smaller ones, representing the drag imposed by fric-
tion with the solvent. The frictional resistance scales with the root
mean square difference, 〈 (�rij)2〉 1/2, between the monomer posi-
tions of the conformations i and j, after optimal superimposition of
the two conformations. Bonds have unit length. Based on these
definitions, the ij-th element of A that is associated with the pas-
sage from conformation j to conformation i, becomes

kij = exp�− �Gij�RT� = exp�− 
 
��rij�
2�1�2�

exp�− �qi − qj�� H�qi, qj��RT� ( 4 )

where �Gij is the free energy change accompanying the transition,
qi is the number of native contacts in conformation i, 
 is a pro-
portionality constant dependent on the frictional resistance, and
H(qi, qj) is the heavyside step function, equal to 1 if qj > qi and
zero otherwise. In the absence of viscous effects, 
 � 0. Alterna-
tively, the friction could have an inverse proportionality on vis-
cosity, following Kramer’s rate expression (Jacob and Schmid
1999). But we preferred to include explicitly the 〈 (�rij)2〉 1/2 values
in the front term of Equation 4, because this gives a structural basis
for different rates. We used � � −5 RT and 
 � 0.5 for the
9-mers, and � � −2.3 RT and 
 � 1.0 for the 16-mers. These

parameters give reasonable stabilities and prevent computational
overflows that can arise from large time scale differences between
the fast and slow processes.

Initial conditions and equilibrium distribution

For 9-mers, the initial condition is taken to be the uniform distri-
bution of all conformations; that is, Pi(0) � 1/N for all i. This
represents the infinite temperature limit. For 16-mers, the initial
distribution is taken to be the Boltzmann distribution at 500 K. In
both cases, folding is initiated by cooling the system to room
temperature (300 K), at which the equilibrium probabilities of the
corresponding native conformations (n) are Pn(�) � 0.9848 for
the 9-mers, and 0.837 for the 16-mers.
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