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Abstract: Elastic network models have been successful in elucidating the largest scale collective motions of proteins.
These models are based on a set of highly coupled springs, where only the close neighboring amino acids interact,
without any residue specificity. Our objective here is to determine whether the equivalent cooperative motions can be
obtained upon further coarse-graining of the protein structure along the backbone. The influenza virus hemagglutinin A
(HA), composed of N = 1509 residues, is utilized for this analysis. Elastic network model calculations are performed
for coarse-grained HA structures containing only N/2, N/10, N/20, and N/40 residues along the backbone. High
correlations (>0.95) between residue fluctuations are obtained for the first dominant (slowest) mode of motion between
the original model and the coarse-grained models. In the case of coarse-graining by a factor of 1/40, the slowest mode
shape for HA is reconstructed for all residues by successively selecting different subsets of residues, shifting one residue
at a time. The correlation for this reconstructed first mode shape with the original all-residue case is 0.73, while the
computational time is reduced by about three orders of magnitude. The reduction in computational time will be much
more significant for larger targeted structures. Thus, the dominant motions of protein structures are robust enough to be
captured at extremely high levels of coarse-graining. And more importantly, the dynamics of extremely large complexes
are now accessible with this new methodology.
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Introduction

It is possible to explore the molecular motions of proteins around
the folded state by fully atomistic molecular dynamics (MD) sim-
ulations and normal mode analysis (NMA).1 – 3 However, these
techniques become computationally ineffective for the investiga-
tion of large quaternary structures and biomolecular complexes due
to the increase in the system size. In this respect, coarse-grained
approaches have proven to be useful in elucidating the functionally
important collective motions of large proteins.4 – 8

The representation of protein structures as elastic networks
is a coarse-grained approach that has been effective in pre-
dicting the fluctuation dynamics of proteins around their native
conformation.9 – 11 In this model, named the Gaussian network
model (GNM), the α-carbons of the folded protein are chosen as
the nodes of the elastic network. And the springs connect each node
to all other neighboring nodes that are located within a cutoff dis-

tance encompassing at least the first coordinate shell around each
residue.12 Following Tirion’s original work,13 all springs are as-
signed the same harmonic force constant γ , whose absolute value
can be adjusted by comparison with experiment. GNM efficiently
determines the magnitude of residue fluctuations in the slow col-
lective modes that are relevant to protein function. The fluctuations
are assumed to be isotropic, and give rise to N − 1 independent
modes of motion for a protein composed of N residues. Unlike sim-
ulations, the GNM yields an analytical solution without sampling
inaccuracies. The major utility of the GNM lies in its applica-
tion to large biopolymeric systems, whose MD simulations are
simply not feasible. Previous studies have shown that the GNM
reproduces very closely the X-ray crystallographic Debye-Waller
factors,4, 9 – 11, 14 – 17 the H/D exchange free energies,18 and the or-
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der parameters from NMR-relaxation measurements.19 Also, Tama
et al.20 have shown that normal modes of proteins can be well re-
produced by considering blocks of six amino acids at a time.

Coarse graining of structures has its origin in polymer
computations21 where a chain segment of multiple bonds is cho-
sen to be equivalent to one element of an approximate chain model
having simpler properties. The most common of these equivalent
chain models is the freely jointed chain in which a single bond
having no correlations with its neighbors is utilized to represent a
larger number of actual bonds having a similar level of flexibility.
This freely jointed bond has no resistance from either bond angle
or torsion angle restraints. Such models have also been employed
to represent crosslinked elastic networks. The motivations for these
equivalences differ from that employed in the present work. In these
previous coarse-grained equivalent chain models, the aim has been
to match the behavior of the model chains. In the present case, for
protein dynamics, the purpose is more pragmatic—simply to make
accessible calculations on larger structures than would otherwise
be impossible.

A recent enhancement of the GNM is the anisotropic network
model (ANM), which takes into account the anisotropy of posi-
tional fluctuations.22 Here, the fluctuation vectors, in addition to
the magnitudes, are determined for each residue. Thus, 3N − 6
modes of motion are obtained for a 3D structure of N residues. As
a result, with ANM calculations the mechanism of collective mo-
tions can be elucidated for quaternary structures such as influenza
virus A hemagglutinin.23 A direct comparison of MD simulation
results with GNM and ANM has validated that the collective modes
can be effectively determined with these elastic network models.24

In this study, we will apply ANM to 3D structures that have been
further coarse-grained along the protein backbone. We will show
that the dominant motions can still be effectively extracted from
highly (extremely) coarse-grained structures. This result points out
the possible application of this method to even larger quaternary
structures. In the next section, we will introduce the methodology
of ANM and the different levels of coarse-graining applied to the
3D structure of the specific protein (HA). Then, the comparison of
results from highly coarse-grained and original all-residue calcula-
tions will be illustrated. The last section discusses the implications
and utility of coarse-grained ANM calculations.

Method

Anisotropic Network Model (ANM)

This is an analytical model developed as an extension of the
Gaussian Network Model (GNM) for treating the fluctuations of
biomolecular structures. It takes account of the anisotropy of fluc-
tuations; whereas GNM assumes all fluctuations to be isotropic.
The major advantage of ANM over GNM is that the three com-
ponents of the fluctuation vectors (�Ri ), are computed with the
ANM, while GNM predicts only mean-square fluctuation ampli-
tudes 〈(�Ri )

2〉. Knowledge of fluctuation vectors permits us to
construct—and explicitly view—pairs of alternative conformations
sampled by the action of individual modes, simply by adding the
fluctuation vectors ±�Ri to the equilibrium (native state) position
vectors. The total potential of a structure of N interaction sites is

expressed in the ANM as

V = (γ /2)�RTH�R (1)

where �R is a 3N-dimensional vector of the fluctuations �Ri in
the position vectors Ri of the individual sites (1 ≤ i ≤ N), �RT is
its transpose, and H is the Hessian matrix composed of the second
derivatives of the potential

V = (γ /2)
∑

i

∑
j

h(rc − Rij )(�Rj − �Ri )
2 (2)

Here the summations are performed over all interaction sites, h(x)

is the Heavyside step function [h(x) = 1 if x ≥ 0, and zero
otherwise), Rij is the distance between sites i and j , and rc is
the cutoff distance defining the range of direct interactions. H is
conveniently expressed as a function of N2 submatrices (or super
elements) Hij of the form

Hij =

∂2V/∂Xi∂Xj ∂2V/∂Xi∂Yj ∂2V/∂Xi∂Zj

∂2V/∂Yi∂Xj ∂2V/∂Yi∂Yj ∂2V/∂Yi∂Zj

∂2V/∂Zi∂Xj ∂2V/∂Zi∂Yj ∂2V/∂Zi∂Zj


 (3)

Here Xi , Yi , and Zi are the components of Ri . Note that
∂2V/∂Xi∂Yj = −∂2V/∂Xj ∂Yi = −γ (Xj − Xi)(Yj − Yi)/R

2
ij

for i 	= j , and ∂2V/∂Xi∂Yi = γ
∑

j (Xj − Xi) × (Yj − Yi)/R
2
ij .

In conformity with the GNM approach, the force constant, γ , is
taken to be identical for all bonded and nonbonded pairs, including
even disulfide bridges. γ represents the curvature of the interaction
potential near the minimum point; it does not depend on the radial
separation, at the energy minimum. The adoption of a fixed γ value
for all interactions, is equivalent to assuming that the same curva-
ture holds for all pairs near the energy minimum, which has been
confirmed to be a valid approximation in previous GNM studies.

The cross-correlations between the fluctuations of sites i and j

are found from

〈�Ri ·�Rj 〉

= (1/ZN)

∫
(�Ri ·�Rj ) exp{−V/kBT } d{�R}

= (3kBT/γ ) tr
[
H−1]

ij
(4)

where kB is the Boltzmann constant, T is the absolute temperature
in degrees Kelvin), ZN is the conformational partition function,
and tr[H−1]ij designates the trace of the ij th submatrix [H−1]ij
of H−1. 〈�Ri · �Rj 〉 can be expressed as a sum over the con-
tributions [�Ri · �Rj ]k of the 3N − 6 individual modes, as
〈�Ri · �Rj 〉 = ∑

k[�Ri · �Rj ]k . The contribution of the kth
mode is

[�Ri ·�Rj ]k = (3kBT/γ ) tr
[
λ−1

k ukuT
k

]
ij

(5)

where λk is the kth nonzero eigenvalue and uk is the corresponding
eigenvector. The eigenvalues are representative of the frequencies
of the individual modes, and the eigenvectors describe their shape,
i.e., their effect on the positions of the N interaction sites. The
eigenvalues are usually organized in ascending order (omitting the
six zero eigenvalues), such that λ1 refers to the lowest frequency,
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Figure 1. X-ray structure of hemagglutinin (HA) showing α-carbon
atoms of (a) all residues (N = 1509), and coarse grained with (b) N/10
and (c) N/40 residues.

also called the global, mode of motion, and [�Ri · �Rj ]1 is the
correlation driven by this mode. Likewise, [(�Ri )

2]1 is the mean-
square (ms) fluctuation in the position of site i induced by mode 1.
The slowest modes usually play a dominating role in the collective
dynamics of the structure. They are the only surviving or operating
modes at long times, hence their implications for biological func-
tion.

Protein

Influenza virus hemagglutinin A (HA) is an integral membrane gly-
coprotein, which is involved in the binding of the virus to target
cells and in the fusion of viral and endosomal membranes at the low
pH environment. The X-ray structure of HA has been determined25

and refined26 by Wiley and coworkers, as shown in Figure 1a. HA is
a cylindrically shaped homotrimer of 1509 residues. The monomers
are composed of two polypeptides chains each, HA1 (residues 1–
328) and HA2 (residues 329–503) that are linked by two disulfide
bridges. The three monomers are assembled into a central coiled
coil that forms the stem-like domain, and three globular heads con-
taining the receptor binding sites. The fibrous stem-like domain
consists of all HA2 and some HA1 residues. Each monomer is
anchored in the viral membrane by a single trans-membrane pep-
tide near the C-terminus of its HA2 chain. The globular heads are
formed by the HA1 residues 116–261 folded into a jelly roll motif
of eight antiparallel β-strands. The distal tips of the globular heads
contain the receptor binding sites.

Coarse-Graining Procedures

A detailed study on the functional motions of hemagglutinin23 has
been performed based on the two analytical methods—GNM and
ANM—discussed above. In that study, all residues’ interactions
were considered, the interaction sites being identified with the posi-
tions of α-carbon atoms (N = 1509) taken from the X-ray structure
of HA. Our present study will focus on the consequences of adopt-
ing increasingly lower resolution models on the collective motions
extracted by ANM. The coarse-graining is performed at a series

of hierarchical levels by retaining (N/2), (N/10), (N/20), and
(N/40) α-carbon atoms of the original structure. Figure 1b and c
display results for individual cases of coarse-grained 3D structures
for the (N/10) and (N/40) cases, respectively.

Here, we coarse-grain HA’s structure uniformly on the basis of
its primary sequence, i.e., along the chain backbone. If we sequen-
tially number the residues of HA in the original PDB file (2HMG,
reference), the residue indices of the three identical monomers
would be (1–503), (504–1006), and (1007–1509). Taking (N/10)

structure as a specific example, nonsymmetrical coarse-graining
would lead to retention of residues (1, 11, 21, . . . , 1501) for further
ANM calculations. In this case, the first (N-terminal) residues of
the three identical monomers that are retained are the first, eighth,
and fifth residues on their primary structures sequentially. Thus, the
resulting coarse-grained monomers are not identical any more, in
terms of sequence or 3D structure. In symmetrical coarse-graining,
we would keep the first residue of each monomer so that the
resultant coarse-grained structure is still a homotrimer with iden-
tical monomers (first monomer: 1, 11, . . . , 501, second monomer:
504, 514, . . . , 1004, and third monomer: 1007, 1017, . . . , 1507).
Here we indicated only one of the 10 possible subsets of residues
that form N/10 structure. There are nine other frames of coarse-
graining for N/10, which would be utilized by shifting the index
of first retained residue from 1 through 10.

Results and Discussion

Comparison of Equilibrium Fluctuations with Experiments

Figure 2 compares the Debye–Waller factors measured by X-ray
crystallography (solid curve) with those predicted by the ANM
(dotted curves) for the HA trimer.26 The three monomers exhibit
practically the same behavior both in experiments and calculations.
Therefore, the fluctuations of residues are presented as averages
over the three monomers, although the calculations have been per-
formed for the trimeric structure containing 1,509 residues.

The experimental Debye–Waller factors, the so-called B-
factors, are related to the ms fluctuations of individual residues
(1 ≤ i ≤ N) as Bi = (8π2/3)〈(�Ri )

2〉. There is a single para-
meter in the present analytical calculations, the force constant γ ,
which is adjusted to obtain the best match between the average
values of ms fluctuations predicted by ANM and the experimental
B-factors. The force constant is a measure of the strength of in-
tramolecular potentials that stabilize the native fold. A typical force
constant of 0.95 kcal/(mol Å2) is obtained for HA using a cutoff of
13 Å for interresidue interactions. This specific cutoff value and
the corresponding force constant fall within the range suggested by
other recent ANM studies.22 It may eventually become possible to
evaluate these constants from neutron scattering experiments.27

The agreement between theory and experiments is noteworthy
in that no residue specificity or nonlinear effects are included in the
theory. Moreover, the resolution of the examined crystal structure is
relatively good (3 Å), and the ms fluctuations are usually subject to
even larger experimental uncertainties than the mean positions. The
correlation coefficients between theory and experiment are found to
be 0.79 and 0.70 for the HA1 and HA2 chains, respectively.
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Figure 2. Comparison of experimental and theoretical (ANM) ms fluctuations as a function of residue
number for HA.

Comparison of the Results from Hierarchical
Coarse-Graining Levels with the Original ANM Results

ANM calculations are performed for HA structures that have been
nonsymmetrically coarse-grained at higher levels. Table 1 summa-
rizes these models containing N = 1509 (original), N/2, N/10,
N/20, and N/40 of the total number of residues. The original cut-
off radius of 13 Å necessarily must be increased for higher levels
of coarse-graining so that force constants comparable to the origi-
nal value of 0.95 kcal/(mol Å2) are obtained. The slight variations
in the force constants, γ , for different values of cutoff distance
(Table 1) follow from the normalization of the theoretical results
to match crystallographic fluctuation data. If we were to keep a
constant cutoff of 13 Å for more highly coarse-grained structures,
then the ANM analysis would yield more than six zero eigenval-
ues, and certain residues would exhibit extremely large amplitude
unrealistic fluctuations.22 The implementation of larger cutoff radii
removes such physically unrealistic behavior by smoothing over the
missing parts of the structure. Next, we will discuss the correlations
among the ANM results obtained for the entities in Table 1.

Mean Square Fluctuations

ANM calculations for N/2 residues lead to almost indistinguish-
able ms fluctuations from the original results (N = 1509 residues),

Table 1. Details of Coarse-Grained ANM Calculations.

Number Cutoff Force Mean
Coarse of Radius Constant Coordination
Graining Residues (Å) (kcal/mol Å2) Number

N 1509 13 0.95 39.2
N/2 755 18 0.75 44.2
N/10 151 30 1.21 28.4
N/20 76 40 1.28 25.8
N/40 38 60 1.38 22.6

as shown in Figure 3a. The results are averaged over the three
monomers because they exhibit almost the same behavior. The re-
sults of further coarse-graining the structure at the level of N/10
and N/40 residues are displayed in Figure 3b and c, respectively.
Here the results for all three monomers are displayed, because
the ms fluctuations of the three monomers are not identical due
to nonsymmetric method of coarse-graining. In each panel, the
ms fluctuations obtained from the original all-residue calculations
are plotted for only those specific residues that are retained in the
coarse-grained structures for clarity. Moreover, the correlations of
coarse-grained ms fluctuations with those from original calcula-
tions are given in Table 2. These results are for a specific frame of
nonsymmetrical coarse-graining starting at the first residue of HA.
Other frames would yield similar correlation coefficients. As can
be observed, the correlation coefficients are quite high even in the
extreme case of coarse-graining, N/40.

Collective Motions

The low-frequency modes, also called global modes, provide in-
sights about the mechanisms of the cooperative conformational
motions of native structures. Such motions are expected to be rele-
vant to biological function. Our aim here is to see whether we can
still extract reliable information about the global motions of HA
even if its structure is extremely coarse-grained.

In Figure 4a, a cubic-spline fit is performed on the first (slow-
est) mode shape of N/40 and all-residue calculations. Here, all
N = 1509 residues are considered in the fit to all-residue calcu-
lations (solid curve), and the resulting mode shape is symmetric,
as expected. The curve for the model including only N/40 of the
residues, on the other hand, is the best fitting cubic spline through
the results (solid curve) for the sparse interaction sites (1509/40 of
them) included in the coarse-grained model. The important point
is that the nonsymmetric mode shape of the N/40 residues consid-
ered can still capture the important details of the first mode shape.
Figure 4b displays the slowest mode shape for only those specific
N/40 residues preserved in a single N/40 calculation. The fit is
excellent with a correlation coefficient of 0.98. The correlation co-
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Figure 3. Comparison of ms fluctuations from original all-residue ANM calculations with (a) N/2
(average of three monomers), (b) N/10, and (c) N/40 cases.
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Table 2. Correlations of Coarse-Grained Results with the Original
All-Residue Case.

All modes First Mode Second Mode

N/2 0.94 1.00 0.96
N/10 0.86 0.95 0.92
N/20 0.82 0.98 0.96
N/40 0.79 0.98 0.81

efficients for the first two modes of motion are listed in Table 2 for
all levels of coarse-graining. As can be observed, the slowest mode
shapes show excellent fit to the original all-residue calculations,
much better than the correlation for all modes.

Distribution of Eigenvalues

Figure 5 shows the fractional contribution of each mode as a
function of mode number. The ordinate represents the weighted
contribution of each mode to the ms fluctuations. The first three
slowest modes with the smallest eigenvalues make the greatest con-
tribution to the overall motion, and this is true regardless of the level
of coarse graining. Notably these “slowest” motions usually reflect
the overall shape of the structure and not any of the details. The
cumulative contribution of the first three modes sum up to 0.22 in
the N/40 case, whereas this value decreases to 0.15 for the original
case, due to the longer tail of the (3N −6) eigenvalue distributions.
The present distributions unambiguously demonstrate that the dis-
persion of the most dominant (slowest) modes is almost unchanged
in the models with different levels of coarse-graining. Adoption

Figure 4. Comparison of distribution of fluctuations in the first mode of original ANM calcula-
tions with that for N/40. (a) The distributions are plotted after performing cubic-spline fits for
both curves. (b) Fluctuations are shown only for the retained N/40 residues for both cases.
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Figure 5. Fractional contribution of each mode to the total motion against the mode number for all-
residue and coarse-grained ANM calculations.

of higher resolution models simply introduces more modes at the
high-frequency end of the spectrum, while having a minimal effect
on the characteristics of the lowest frequency modes.

Reconstruction of All-Residue Slowest Mode Shape from
N/40 Residue Calculations

The excellent correlation among the actual N/40 residues of the
extremely coarse-grained and the corresponding elements of the
original structure, shown in Figure 4b, indicates that even the N/40
residue representation is sufficient to obtain the amplitudes of fluc-
tuations in the global modes of HA. It would be interesting if

we could reconstruct the original symmetric mode shape for all
N = 1509 (or N/2) residues by shifting the frame of the re-
tained N/40 residues to calculate the fluctuation amplitudes for the
missing residues. For the N/40 case, we need to perform ANM
calculations with the addition of different frames to restore the
complete mode shapes. Figure 6 displays such a reconstructed first
mode shape for N/2 residues, giving a comparison of original
vs. reconstructed N/2 results, based on the repetitive use of the
N/40 model. Figure 6 is obtained from symmetric coarse-graining
of the monomers, and the reconstructed N/2 mode shape. The
correlation coefficients are 0.84 and 0.73 for the smoothed and non-
smoothed data points, respectively. Here, smoothing is performed

Figure 6. Reconstruction of the N/2 first mode shape by using 20 different frames of N/40
calculations, using symmetric coarse-graining.
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by averaging over the fluctuations in windows of five successive
points.

The high correlation between the two sets of results presented
in Figure 6 shows that even adopting an extremely high level of
coarse-graining very closely reproduces the global mode shape.
Calculations indicate that this mode leads to a global twisting of
the trimeric molecule about its axis of cylindrical symmetry (not
shown). In particular, the base portion of the stem-like domain is
highly mobile in this mode. Such a conformational mobility has
been ascribed to the translocation and aggregation of HA mole-
cules preceding the opening of a viral membrane pore via a biaxial
deformation mechanism.23 Experimental studies suggest that the
collection of three or more HA molecules is required for membrane
pore opening.28

Figure 7 illustrates the mechanism of motion of the second
slowest mode for (a) the all-residue and (b) N/10 cases. This mode

Figure 7. Mechanism of second mode of motion from (a) all-residue,
and (b) N/10 calculations. The two structures shown represent the
conformations that HA visits in the opposite directions according to
the motion of the second mode.

of motion indicates bending of the whole molecule around the same
hinge site, at both levels of coarse-graining. Such a global bending
has been proposed by several groups as a major mechanism under-
lying the association of the viral and endosomal membranes prior
to their fusion.29, 30

Conclusion

The anisotropic network model has recently been introduced for the
investigation of collective motions of proteins.22, 24 ANM assumes
a simple elastic network structure, formed by springs that connect
close α-carbon atoms in the 3D structure of proteins. In this study,
we have investigated the consequences of retaining only a frac-
tion of the residues (α-carbons) along the protein’s backbone on
the collective motions extracted by the ANM. The coarse-grained
ANM calculations have been performed on influenza virus hemag-
glutinin, a homotrimeric enzyme composed of 1509 residues. The
results indicate that almost the same shapes for the slowest modes
of motion are obtained, even when including only 1/40th of the
complete set of residues in HA. Correlation coefficients between
the ms fluctuations of residues evaluated from the original all-
residue model and those found from coarse-grained models lie in
the ranges of 0.95–0.98 and 0.81–0.96 for the first and second
slowest modes, respectively, where the upper and lower limits cor-
respond to the adoption of N/40 and N/2 residues, respectively,
in the coarse-grained models. These high correlations unambigu-
ously indicate that the low-frequency collective motions of proteins
are robust enough to be almost identically extracted from even ex-
tremely coarse-grained descriptions of the 3D structure.

The analysis of the different mode shapes demonstrates that in-
cluding more detailed descriptions of the 3D structure essentially
adds modes with higher frequencies without changing the global
mode shapes. Thus, the most cooperative motions of the folded
structure, which are also the functionally most important motions,
are estimated with high accuracy at the cost of only losing informa-
tion on the high-frequency mode shapes.

Another interesting finding is that we can reconstruct the orig-
inal mode shape by shifting successively the frame of the retained
N/40 residues to calculate the fluctuation amplitudes for all miss-
ing residues. The correlation for this reconstructed first mode shape
with the original case is 0.73, while the computational time is re-
duced by more than two orders of magnitude. This result is highly
significant because it now permits us to investigate the global mo-
tions of extremely large structures by reducing the total number of
residues, by repeating smaller calculations by simply shifting the
reading frame. Thus, the dynamics of extremely large complexes
now become accessible with this new method.
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