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ABSTRACT The dynamics of a-amylase inhibi-
tors has been investigated using molecular dynam-
ics (MD) simulations and two analytical approaches,
the Gaussian network model (GNM) and anisotropic
network model (ANM). MD simulations use a full
atomic approach with empirical force fields, while
the analytical approaches are based on a coarse-
grained single-site-per-residue model with a single-
parameter harmonic potential between sufficiently
close (r < 7 Å) residue pairs. The major difference
between the GNM and the ANM is that no direc-
tional preferences can be obtained in the GNM, all
residue fluctuations being theoretically isotropic,
while ANM does incorporate directional prefer-
ences. The dominant modes of motions are identi-
fied by (i) the singular value decomposition (SVD) of
the MD trajectory matrices, and (ii) the similarity
transformation of the Kirchhoff matrices of inter-
residue contacts in the GNM or ANM. The mean-
square fluctuations of individual residues and the
cross-correlations between domain movements re-
tain the same characteristics, in all approaches—
although the dispersion of modes and detailed ampli-
tudes of motion obtained in the ANM conform more
closely with MD results. The major weakness of the
analytical approaches appears, on the other hand,
to be their inadequacy to account for the anhar-
monic motions or multimeric transitions driven by
the slowest collective mode observed in MD. Such
motions usually suffer, however, from MD sampling
inefficiencies, and multiple independent runs should
be tested before making conclusions about their
validity and detailed mechanisms. Overall this study
invites attention to (i) the robustness of the average
properties (mean-square fluctuations, cross-correla-
tions) controlled by the low frequency motions,
which are invariably reproduced in all approaches,
and (ii) the utility and efficiency of the ANM, the
computational time cost of which is of the order of
“minutes” (real time), as opposed to “days” for MD
simulations. Proteins 2000;40:512–524.
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INTRODUCTION

The biological function of proteins is generally controlled
by cooperative motions or correlated fluctuations involving
large portions of the structure.1–5 There exists a multitude
of computational methods in the literature for identifying
the dominant correlated motions in macromolecules.1,3,6–17

The basic approach common in these studies is to decom-
pose the dynamics into a collection of modes of motion,
remove the “uninteresting” (fast) ones, and focus on a few
low frequency/large amplitude modes which are expected
to be relevant to function.

A classical approach for determining the modes of
motion is the normal mode analysis (NMA). NMA has
found widespread use in exploring proteins’ dynamics
starting from the original work of Go and collaborators,
two decades ago. It is based on the diagonalization of the
second-derivative potential energy matrix,6,18,19 assuming
that harmonic potentials operate near equilibrium coordi-
nates. The method has later been extended into a quasi-
harmonic oscillator approximation which utilizes, as in-
put, the fluctuations (auto- and cross-correlations) observed
in molecular dynamics (MD) simulations, thus including
the effects of anharmonicity.7,20,21 The process of extract-
ing the dominant collective modes, or the essential dynam-
ics14,22 from fluctuations seen in MD trajectories—also
called principal component analysis (PCA),23 or the molecu-
lar optimal dynamics coordinates analysis2—is now an
established computational means of studying proteins’
dynamics.5 The major shortcoming of this approach is the
sampling inefficiency of MD simulations. The sampling
problem becomes increasingly important as the size of the
investigated molecular system increases, as shown by
projecting the MD trajectory onto the first few PCs.24, 25

The Gaussian network model (GNM) approach was
recently proposed as a simple but extremely efficient
analytical tool for modeling the dynamics of folded pro-
teins.26 The structure is viewed as a completely elastic
network, the nodes of which are the a-carbons, and the
springs/chains are the bonded or nonbonded interactions
between sufficiently close (r # 7.0 Å) residue pairs. The
cutoff distance rc 5 7.0 Å includes all neighbors within a
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first coordination shell.27,28 Following Tirion’s original
proposition,29 a single parameter (g) harmonic potential is
assigned to all pairs of residues, the absolute value of
which is to be adjusted from comparison with experiments.
Despite its simplicity, the GNM reproduces very closely
the X-ray crystallographic Debye-Waller factors,26 the
H/D exchange free energy costs,30 and the NMR relaxation
order parameters,31 of individual residues in a diversity of
proteins. Its major utility lies in its application to large
systems. Quaternary structures that would necessitate
enormous amounts of computation time if examined by
MD can be analyzed within seconds (CPU time) with the
GNM. The mechanisms of concerted motions in complexes
such as HIV-1 reverse transcriptase with bound DNA,32

tRNA with its cognate synthetase,33 or enzymes compris-
ing multiple subunits, such as Trp synthase having over
1,000 residues,34 were recently elucidated, consistent with
experimental data. Major criticism of the GNM is its
inadequacy to describe anharmonic fluctuations. This is a
deficiency common to GNM and NMA.

In the present paper, we investigate the dynamics of a
b-protein, a-amylase inhibitor tendamistat, using both
MD simulations, and GNM analytical solution. MD trajec-
tories will be analyzed by singular value decomposition
(SVD) technique,35 a tool that proved useful for studying
protein dynamics.17 We will extract here the nonlinear
modes along the singular vectors—counterparts of the
principal axes in PCA—and compare these to GNM modes.
Finally, a new analytical method will be introduced,
referred to as the anisotropic network model (ANM), which
will permit inclusion of the effect of anisotropy in the
network model of proteins, as this effect has proved to
produce significant enhancements in the positional fluctua-
tions, especially for larger amplitudes associated with
lower frequencies.36

The type of information that will be provided by the
present study is twofold. First, information on the dynam-
ics of a protein representative of a distinct fold according to
SCOP37 will be found. The so-called a-amylase inhibitor
fold is a sandwich of two b-sheets composed each of three
strands. Both X-ray and NMR studies of the structure of
tendamistat are available, but no theoretical study of the
dynamics of this family has been performed to date. An
assessment of the regions involved in concerted motions
and residues modulating the cooperative fluctuations will
be made here using MD simulations, and the exact solu-
tions from the GNM and ANM theories. The analysis will
also serve to suggest the sites prone to disruptive muta-
tions.

The second issue to be addressed relates to an assess-
ment of the utilities and/or limitations of the results from
the GNM, as deduced from comparison with MD results.
The GNM is a low resolution model. A protein of n residues
has n degrees of freedom in the GNM, each residue being
conceived as an elastic oscillator. A total of n 2 1 internal
modes (after elimination of the zero eigenmode) is ob-
tained, while MD trajectories yield 3n 2 6 internal modes
for a model of m sites. Most of the high frequency modes
are however uninteresting and can be eliminated in both

cases. The question is then how similar are the dominant,
low frequency modes revealed by these two totally differ-
ent approaches. The subspace spanned by a small number
of collective coordinates is pointed out to be invariant in
many cases, and almost independent of the treatment of
the degrees of freedom, the solvent effect, the simulation
length and initial conditions.5 On the other hand, some
proteins are observed to visit two different substates along
the first few principal axes.2,5,38 GNM does not include
such bistable equilibria. It is of interest to establish the
differences between GNM modes and those unraveled by
PCA of MD trajectories by analyzing the same protein at
the same level of resolution (single-site-per-residue). An-
other issue of interest is to compare the density of modes
(distribution of frequencies) in the two methods. The
present analysis will shed light into the differences of the
two approaches, indicate which dynamic features are
overlooked and which are adequately described by the
simple GNM approach.

MATERIALS, MODELS, AND METHODS
Structures

Tendamistat (Hoe 467A) is an a-amylase inhibitor of 74
residues. Residues 11–73 are folded into a b-structure of
six strands I–VI (Fig. 1a). The topology of the protein
resembles that of immunoglobulins’ constant domains.
However, tendamistat forms a six-stranded b–barrel as
opposed to the seven strands of the immunoglobulins’
constant domains. Tendamistat is indeed representative of
a distinct fold, called a-amylase inhibitor fold, being the
only member of the family and superfamily of a-amylase
inhibitors whose structure has been elucidated to date.
The amino acids W18, R19, and Y20 in the loop connecting
strands I and II are pointed out to be possibly involved in
binding to target mammalian a-amylases.39 The X-ray
crystallographic structure determined at 2.0 Å resolution
is used in simulations.39 This structure is closely superim-
posable on the solution structure determined by NMR,40,41

as shown in Figure 1b. The root-mean-square (rms) devia-
tion between the a-carbon coordinates of the X-ray and
NMR structures is 2.29 Å, and reduces to 1.02 Å if the
highly flexible N-terminus (residues 1–10) is neglected.

Simulations

The MD simulations are performed using the GROMOS
package with the set of energy parameters 37D4 in
vacuum.42 Bond lengths are constrained to their equilib-
rium values using the SHAKE algorithm.43 This allows to
adopt time steps of 2 fs. Nonpolar hydrogens are treated by
the united atom approach. Non-bonded interactions are
calculated using the twin range method:44 a short-range
cutoff radius of 8 Å is used for van der Waals interactions,
and a cutoff of 12 Å for the electrostatic interactions. The
neighbors list is updated every 20 fs. The initial structure
(Protein Data Bank (PDB)45 code: 1hoe) is relaxed by 100
steps of conjugate gradients energy minimization prior to
simulations. The initial velocities are assigned according
to the Boltzmann distribution at 300 K. The temperature
is kept fixed by coupling to an external heat bath with a
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relaxation time constant of 0.01 ps.46 Two independent
runs of 0.9 ns are performed, referred to as MD-1 and
MD-2. Configurations are saved every 0.25 ps, yielding an
ensemble of n 5 2,800 snapshots per run, after the
equilibration period of 200 ps.

SVD of MD Trajectories

The snapshots recorded during the MD simulations are
organized in the fluctuation trajectory matrix of order 3n 3
N,

DR 5 3
DR1~t1! DR1~t2! z z z DR1~tN!
DR2~t1! DR2~t2! z z z DR2~tN!
DR3~t1! DR3~t2! z z z DR3~tN!

z z z z z z
DRn~t1! DRn~t2! z z z DRn~tN!

4 (1)

describing the fluctuations in the position vectors of the n
a-carbons of the protein, at successive times t1, t2, . . . ., tN.
D Ri(tj) is the 3 3 1 column that represents the change in
the position vector of the ith a-carbon at the jth time step,
relative to its mean position throughout simulations.
Using SVD technique,35 DR is decomposed into the prod-
uct of three matrices as

DR 5 Q S VT (2)

Here Q is the 3n 3 3n matrix of left singular vectors qi

(LSVs) of DR, V is the N 3 3n matrix of right singular
vectors (RSVs), and S is the diagonal matrix of the 3n
singular values si. The LSVs are the counterparts of the
principal axes (PA) in PCA. The singular values represent
the relative contributions of each mode (along each LSV) to
the total motion of the molecule. 3n 2 6 modes refer to
internal motions, and six to rigid-body translation and
rotation. We consider the internal motions. The correspond-
ing singular values are organized in descending order s1 $
s2 $ . . . .. $ s3n 2 6. The first few modes having the highest
singular values define the essential subspace, whereas
those having lower singular values are expected to be
Gaussian fluctuations.14 The ith row of SVT represents the
time evolution of the overall molecular configuration along
the ith LSV qi.

After decomposition of DR, it is possible to reconstruct
the MD trajectories on a coarse-grained scale and eluci-
date the dominant mechanisms of motion, by focusing on
the effect of a few (k) low frequency modes in Eq. (2). For
eliminating the uninteresting degrees of freedom, it suf-
fices to equate to zero all singular values si with i . k. The
new trajectory, DR9(k), is expected to reflect the coopera-
tive large amplitude/low frequency fluctuations involved
in biological function.

GNM Analysis

GNM analysis is based on the knowledge of the residue
pairs (i, j) that are in contact, i.e., rij # rc, where rij is the
distance between residues i and j, and rc is the cutoff
distance of interactions, each residue position being conve-
niently identified by that of its a-carbon. These pairs of
residues form the non-zero elements of the so-called Kirch-
hoff matrix G, which is characteristic of the investigated

structure. G is a symmetric matrix that describes the
topology of contacts, similar to contact maps. Its off-
diagonal and diagonal elements are defined as26

Gij 5 H 2 1 rij # rc

0 rij . rc
Gii 5 2 O

k,k Þ i

n

Gik (3)

As to the inverse G21 of the Kirchhoff matrix, the diagonal
elements scale with the mean-square fluctuations ^(D
Ri)

2&, and the off-diagonal elements with the cross-
correlations ^D Ri z DRj& in residue fluctuations, according
to

, DRi z DRj . 5 ~3kBT/g!@G 2 1#ij (4)

Fig. 1. (a) Ribbon diagram of the a-amylase inhibitor tendamistat fold.
The fold comprises six b-strands: I (gray; residues 11–17), II (black;
19–26), III (black; 30–37), IV (gray; 40–49), V (gray; 51–57) and VI (gray;
64–73). Strands I, II, and V form the sheet S1, and strands III, IV, and VI,
the sheet S2. (b) Backbone of the X-ray39 and NMR structures41 of
tendamistat, shown in gray and black, respectively.

514 P. DORUKER ET AL.



Here kB is the Boltzmann constant, T is the absolute
temperature, the subscripts ij designate the particular
elements of the matrix enclosed in square brackets, and g
is the force constant for the elastic potential between
contacting residues. gG is nothing else than the matrix of
second derivatives in NMA, for the simple case of a
uniform (single-parameter) harmonic potential between
all interacting pairs. The eigenvalue decomposition of G21

yields the n 2 1 internal modes contributing to fluctua-
tions, as

, DRi z DRj . 5 ~3kBT/g!@UL21UT#ij

5 ~3kBT/g!Ok@lk
21ukuk

T#ij (5)

where U is the matrix of the eigenvectors ui of G, L is the
diagonal matrix of its eigenvalues li, and UT designates
the transpose of U, where UT 5 U21. The summation in
Eq. (5) is performed over the n 2 1 non zero eigenvalues of
G, which are organized in ascending order l1 # l2 # l3

#. . . .# ln 2 1 (ln 5 0).

Relation Between GNM and MD Modes

The fluctuation trajectory matrix from MD simulations,
multiplied by its transpose, yields the 3n 3 3n second
moment matrix A, which may be written in terms of the
LSVs and singular values of DR as

A 5 DR DRT 5 Q S VTV S QT

5 Q S2QT 5 Ok@sk
2 qk qk

T# (6)

A may be viewed as an n 3 n matrix, the ijth element of
which is the 3 3 3 second moment matrix47 multipled by
N, i.e.

Aij 5 NF , DXi DXj . , DXi DYj . , DXi DZj .
, DYi DXj . , DYi DYj . , DYi DZj .
, DZi DXj . , DZi DYj . , DZi DZj .

G (7)

of correlations between the X-, Y-, and Z- components of
the fluctuations DRi and DRj of residues i and j. We note
that the cross-correlation between the fluctuations of
residues i and j is given by

, DRi z DRj . 5 ~1/N! tr@Aij# (8)

where tr designates the trace of the matrix. Equations (8)
and (4) establish the connection between GNM and SVD
modes. A and G21 can indeed be viewed as the counterpart
of each other, the former in the 3n-dimensional space
spanned by the LSVs qi of DR, and the latter in the
n-dimensional space spanned by the eigenvectors ui of G.
We also note the correspondence between the eigenvalues
of G and the singular values of DR: (3kBT/g) lk

21 is the
counterpart of sk

2. If the fluctuations of the molecule were
isotropic, the singular values extracted from MD would be
triply degenerate, each, and could be directly compared to
the eigenvalues found from the GNM.

Anisotropic Effects on Fluctuation Dynamics

In the ANM, the fluctuations are no longer assumed to
be isotropic, but their X-, Y-, and Z- components are

evaluated separately. Therefore, not only the ms ampli-
tudes of fluctuations, but their directionalities are deter-
mined. It suffices to replace the Kirchhoff matrix of contact
with a new 3n 3 3n stiffness matrix V, the elements of
which are simply the product of the matrix of direction
cosines B, with its transpose BT.48 B is a 3n 3 m matrix,
composed of n submatrices of size 3 3 m corresponding
each to a given residue i (1 # i # n), m being the total
number of network chains (connecting bonded or non
bonded pairs of a-carbons located within rc). The kth
element of the first (second or third) row of the ith
submatrix is equal to the cosine of the angle between the
mth chain end-to-end vector and the X- (Y- or Z-) axis of the
laboratory-fixed frame (or PDB frame) if the kth chain
connects the ith residue to any other residue, and to zero
otherwise. A direct comparison between the 3n 2 6 aniso-
tropic modes of the ANM and those deduced from MD
trajectories will permit us to make an assessment of the
contribution of anisotropic effects on the departure of the
GNM results from those found in MD.

RESULTS AND DISCUSSION
Equilibrium Fluctuations

Figure 2a compares the mean-square fluctuations in
residue positions predicted by the GNM approach (solid
curve), and observed in MD simulations (boldface, dashed
curve). MD results refer to the average of the two runs
MD-1 and MD-2. In the same figure the experimental
data39 from X-ray crystallography (thin, dotted curve) are
displayed. We note the close correspondence between
GNM and MD results. Their correlation coefficient is found
by linear regression to be 0.76. Interestingly, both exhibit
a concrete departure from experimental data. Their respec-
tive correlation coefficients with respect to experimental
data are 0.67 and 0.64.

The GNM results in Figure 2a were calculated using Eq.
(4) for i 5 j, with the crystal structure coordinates of the
inhibitor (PDB code: 1hoe) to construct G, and adopting the
force constant g 5 0.56 (kcal/mol)/Å2. MD results, on the
other hand, are found from Eq. (8) for i 5 j, using the same
crystal structure in simulations. The experimental data
refer to the Debye-Waller factors (Bi) of the a-carbons
measured in X-ray crystallography,49–51 following the
relationship , (DRi)

2 . 5 3 (8p2)21 Bi. Insofar as the
comparison between MD and experiments is concerned,
the major success of MD appears to match the absolute
amplitude of the fluctuations (around 0.8 Å) observed in
experiments. GNM cannot predict absolute fluctuation
amplitudes, but requires the adjustment of a single param-
eter g, to scale the results.

The agreement between the distributions found from the
GNM and MD suggests that the theoretical results can be
physically meaningful, and the difference in the fluctua-
tion behavior of the protein in crystallized form can be
associated with other effects such as intermolecular con-
straints in the tight crystal packing, or static disorder. The
numerical (MD) and analytical (GNM) calculations are
devoid of such effects and could reflect the dynamics of the
molecule in isolated form, or in solution. This view gains
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further support by comparing the GNM predictions using
the NMR structure (PDB code: 4ait) with the fluctuations
observed41 in solution NMR (Fig. 2b). The ms fluctuations
in solution are larger in size than those in the crystal by
about 40%. The GNM force constant g is thus reduced by
the same factor for reproducing the absolute scale of the
fluctuations. The adjustment of this parameter does not,
however, affect the correlation coefficient (0.82) between
the theoretical and the experimental curves in Figure 2b.
This correlation can be viewed to be quite satisfactory in
view of the several assumptions inherent in the GNM.

Finally, in Figure 2c, we compare the theoretical results
found using the ANM (dashed) with the results from MD
simulations (solid). The agreement is strikingly good. The
close agreement between simulations and analytical re-
sults gives further support to the significance and validity
of the theoretical approaches. The observed difference
between GNM and MD results seen in Figure 2a can be to
a large extent attributed to the contributions from anisotro-

pic effects, after observing the excellent agreement be-
tween the ANM and MD results.

Table I lists the correlation coefficients between the
distributions of ms fluctuations found from MD simula-
tions, GNM and ANM analyses, X-ray crystallography and
NMR experiments. Interestingly, the agreement between
two sets of experimental data is poorer than that between
theoretical predictions, despite the adoption of drastically
different models and methods in the theoretical ap-
proaches. ANM and GNM usually exhibit high correlation
coefficients, being both simplified network models having
exact solutions. Yet, ANM proves in general to agree better
than GNM with both MD results and experiments, in
consistency with its rigorous consideration of the anisotro-
pic character of fluctuations.

Dispersion of Modes

Figure 3 displays the dispersion of modes. The fractional
contribution of each mode is plotted therein against the

Fig. 2. Mean-square fluctuations of the a-carbons
as a function of residue number along the chain.
Comparison of (a) GNM and MD simulation predic-
tions with crystallographic B-factors,39 (b) GNM re-
sults with NMR data,41 and (c) MD results with ANM
predictions.
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mode number on the basis of MD simulations (uppermost
curve with open squares), GNM calculations (thick curve
with open circles) and ANM (dashed, filled circles). The
ordinate represents the weighted contribution si

2/[Ssi
2] (or

li
21/Sli

21] in the GNM) of each mode to the ms fluctua-
tions, or to the cross-correlations between residue fluctua-
tions. We recall that there are n 2 1 GNM modes as
opposed to 3n 2 6 MD and ANM modes, hence the
equivalence of each mode in the GNM to approximately
three in MD or ANM. For this reason, to permit us a visual
comparison of the dispersion of modes found in the three
approaches, we chose to plot the GNM results at every
third mode index, starting from i 5 2. For clarity logarith-
mic scales are used on both axes. This emphasizes the
slowest, essential modes, which are of interest for func-
tional motions.

Three regimes can be discerned in Figure 3, separated
by the dotted vertical lines: slow, intermediate, and fast. In
the slow mode regime, the MD modes are found to be more
influential than those predicted by the GNM, while ANM
exhibits an intermediate behavior, revealing the contribu-
tion of anisotropy to the purely harmonic modes of the
GNM. The slowest MD mode is about twice as influential
as that of the GNM. Inasmuch as si

2 (or 1/li) scale with the
amplitude of ms fluctuations, the difference at the inter-
cept also reveals that the amplitude of motions driven by

the slowest modes in MD simulations is about twice that
indicated by the GNM. This factor of two is consistent with
previous comparison of normal mode analysis (NMA) and
MD results.5,38 The GNM approach is another linear
analysis even simpler than NMA. It does not include any
nonlinear and anisotropic effects that are responsible for
enhanced fluctuations.36

ANM, on the other hand, is characterized by an interme-
diate behavior between GNM and MD in the slow modes
regime, while it rather matches the GNM modes at
intermediate and fast regimes. Interestingly, at the fast
end of the spectrum, the relative importance of the MD
and the GNM modes is inverted. In fact, whereas MD
modes contribution decreases exponentially with mode
number, GNM and ANM obey a power law throughout the
intermediate and fast modes regimes. The respective
exponents are 20.72 and 20.86, and respective correlation
coefficients 0.93 and 0.96.

Shapes of the Dominant Modes of Motion

The slowest modes indicate to us the flexibility of the
different segments in the most cooperative collective mo-
tions of the molecule. Figure 4 displays the normalized
distribution of fluctuations as driven by the slowest modes
obtained in simulations, and analytical calculations.
Therein the three slowest modes found from the SVD of
MD trajectories are taken into consideration, along with
the three slowest modes determined from ANM, and two
slowest modes from the GNM. Inclusion of a few additional
slow modes does not alter the shapes of the curves in all
cases.

The three approaches yield similar distributions of
fluctuations, from a global point of view. The GNM results
are generally smoother with well-defined, slightly broad-
ened peaks at turn/loop regions between the strands, and
smooth minima at the strands’ centers. ANM analysis and
MD simulations, on the other hand, yield relatively sharper
peaks. In particular, the high mobility of the loop between
strands V and VI is accurately captured by the ANM and
by MD simulations while GNM cannot describe this en-
hanced motion. Another feature GNM fails to reproduce
here is the mobility of the central portion of strand IV. This
strand contains a bulge at residues 44–45,40 which can
justify the occurrence of a local maximum in the fluctua-
tion curves. However, it is worth noting that GNM does
account for the relatively high flexibility of this bulge
region, if other modes are taken into consideration (see the
GNM curve in Fig. 2a).

In summary, the collective motions driven by the essen-
tial modes exhibit similar fluctuation distributions when
observed at a low resolution scale, irrespective of the
model (atomic or coarse-grained), or potentials (residue-
specific and non linear, or uniform and harmonic) adopted
in the theoretical analysis. There exist only small quantita-
tive differences in fluctuation amplitudes, or weak ex-
trema on a local scale that are being overlooked in the
coarse-grained approach.

From a more critical standpoint, one might view the
results from MD simulations (which are based on full-

TABLE I. Correlations Between Fluctuations From
Different Experiments and Theories†

MD GNM ANM X-ray NMR

MD 1 0.67 0.86a — —
GNM 0.76 1 0.85 — —
ANM 0.86a 0.92 1 — —
X-ray 0.64 0.67 0.68 1 —
NMR 0.72 0.82 0.81a 0.62 1
†Lower diagonal elements refer to the correlation coefficients between
ms fluctuations of individual residues, as found from the superposition
of all modes (Fig. 2); upper diagonal elements refer to the ms
fluctuations driven by the essential modes determined by the three
theoretical approaches (Fig. 4).
aNeglecting 2–3 highly flexible terminal residues.

Fig. 3. Fractional contribution of each mode to the total motion against
the mode number from GNM, ANM, and MD simulations.
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atomic representation and well-established force fields) as
the “most accurate” ones, and use these as a reference for
probing the accuracy of the coarse-grained GNM and ANM
approaches. Quantitative comparison of the GNM and
ANM slow mode curves with those found from MD simula-
tions yields the respective correlation coefficients 0.67 and
0.86. These values clearly indicate the improvement
brought about upon considering anisotropic effects. In fact,
whereas ANM and GNM are comparable with simulations
(or experiments) when all modes are considered (Table I),
they become distinguished in the slow mode regime (see
Fig. 3); ANM comes out to be a more realistic model for
estimating the slowest modes. This is an important feature
inasmuch as these modes are expected to be relevant to
function.3,5,52

The ms fluctuations displayed in Figure 4 provide
information on the relative amplitudes of the motions of
individual residues in the essential modes, but not on their
cross-correlations or couplings, if any. Directional effects
are lost therein by taking the weighted average of the
squared displacements along the dominant PAs. See the
terms ukuk

T or qkqk
T in Eqs. (4) and (6), and their respective

weights 1/lk and sk
2. An assessment of directional prefer-

ences can be made, on the other hand, by directly examin-
ing the vectors uk or qk. The ith element of u1, for example,
describes the displacement of the ith residue along the first
principal axis, that of u2 refers to the displacement of the
same residue along the second PA, and so on. Examination
of the elements of uk for k 5 1, 2, and 3 will indeed
differentiate below, the residue pairs that undergo corre-
lated (same direction) movements, and those subject to
anticorrelated (opposite direction) fluctuations by the ac-
tion of the three essential GNM modes.

Cross-Correlations Between Residue Fluctuations

Figure 5 displays the shapes of the eigenvectors u1, u2,
and u3 associated with the three essential modes eluci-
dated by the GNM (upper three curves, shifted vertically
for clarity), and their weighted average (lowermost curve).
The dashed horizontal lines indicate the zero levels of each

curve. Positive values with respect to these indicate the
groups of residues moving in the positive direction along
the kth mode (k 5 1–3), and negative values refer to the
residues moving in the opposite direction. Dotted vertical
lines, drawn for clarity, separate the different structural
elements.

One can clearly see in the two upper curves of Figure 5
that the largest size displacements (extrema of the curves)
in the two slowest modes coincide with the loop regions,
while there is an inversion in the direction of fluctuations
around the midpoints of the b-strands. These features
suggest a hinge-bending motion or a flexure of the b-sheets
around their central regions. The respective axes about
which the bending occurs are apparently the two normal
axes (say x- and y-axes) spanning the cross-sectional plane
perpendicular to the sheet axis (z-axis). The loops natu-
rally undergo the largest amplitude motions, as they
occupy the farthest positions with respect to the plane of
flexure. The shapes of the eigenmodes 1 and 2 suggest that
these two modes complement each other; their combina-
tion might indeed reflect the bending of the molecule with
respect to a central cross-sectional plane, rather than two
normal axes.

The third essential mode, on the other hand, is expected
to reflect a collective motion with respect to the z-axis. The
strands I, II, and V move together in the positive direction
in this mode, while strands III, IV, and VI undergo
opposite sense movements. Thus, two blocks of strands,
each comprising three strands moving concertedly emerge,
which are subject to opposite sense (anticorrelated) mo-
tions with respect to each other. This could be viewed as an
overall breathing mode, dividing the strands into two
blocks, in consistency with the sandwich-like fold ascribed
to a-amylase inhibitors. Strands I, II, and V have indeed
been described as the elements of the so-called upper sheet
S1, and strands III, IV, and VI those of the lower sheet
S2.39

Finally the joint contribution of the three essential
modes, each weighted by their amplitudes 1/lk, consoli-
date the distinction between the groups of strands {I, II, V}

Fig. 4. Normalized distribution of mean-square
fluctuations driven by the most cooperative, slowest
modes of motion found in MD simulations, ANM, and
GNM calculations.
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and {III, IV, VI}, as seen in the lowermost curve in Figure
5. The fractional contribution of these three GNM modes to
the observed dynamics is (1/l1 1 1/l2 1 1/l3)/Si li 5 0.29.
Yet, these play a dominant role in determining the overall
dynamics, and in particular in controlling the long-time
behavior of the molecule, being the only surviving modes
at long times.

Figure 6 illustrates the orientational correlations be-
tween residue fluctuations. Part 6a is a correlation map
that describes the strength and type of orientational
coupling between all pairs of residues.53 The two axes refer
to residue indices, and the contours represent the normal-
ized cross-correlations

C~i, j! 5 , DRi z DRj . / @ , DRi z DRi . , DRj z DRj . #1/2

(9)
found from the contribution of all GNM modes. Results
obtained with the ANM, and from MD simulations exhibit
similar patterns, and therefore are not shown separately.
In principle, the cross-correlations theoretically vary in

the range [21, 1], the upper and lower limits correspond-
ing to the fully correlated, and fully anticorrelated fluctua-
tions. Uncorrelated fluctuations, on the other hand, yield
C(i, j) 5 0. Limit values of C(i, j) can be found by examining
individual modes; but after superimposition of all modes,
the correlations are usually weakened. In the figure, blue
and green regions indicate the negatively correlated re-
gions (C(i, j) , 0), and orange-red contours refer to
positively correlated regions. The most strongly anticorre-
lated regions are those enclosed by the blue contours.
Examination of the map confirms the anticorrelated fluc-
tuations of the b-sheets formed by the strands {I, II, V} and
{III, IV, VI}, in consistency with the slow mode shapes
(Figs. 4 and 5). These two groups of strands are shown in
red and green, respectively, in Figure 6b. The residues
Trp18, Arg19 and Tyr20 which are pointed out to be
implicated in the recognition of a-amylases by the inhibi-
tor are shown in magenta.

Careful examination of the correlation maps from ana-
lytical treatments and MD simulations reveal the follow-
ing specific features. There are four regions exhibiting
strong positive correlations, indicated by the “1” signs on
the map. The strongest correlation occurs between resi-
dues Arg19 at the N-terminal part of strand II and
residues Asp58 on the loop connecting strands V and VI.
This correlation also includes the sequential neighbors,
Trp18, Tyr20, and Gly59. These residues are sufficiently
close in space (distance between Arg19 and Gly59 a-car-
bons is 3.72 Å, for example) and highly flexible in the most
cooperative modes (see the corresponding peaks in Figure
4), such that their strong coupling serves to efficiently
transmit the signal received by the recognition sites on the
surface into the inner parts of the molecule. A strong
positive correlation between Ser21 and Gln16 also contrib-
utes to the cooperativity of the motion within sheet S1.
These residues belong to the S1 strands II and I, respec-
tively, and their distance is only 4.35 Å. Thus, two groups
of interactions, centered around the strand II residues
18–21, underlie the coherent motion of the upper sheet S1.
On the other hand, a central role, similar to that of strand
II in S1, is played by strand III in the lower sheet S2.
Residues 35–37 on this strand simultaneously interact
with the strand VI residues 67–70 and strand IV residues
near Thr41. Therefore, positive intrasheet correlations
drive the concerted motions of the sheets. The anticorre-
lated motion of the sheets, on the other hand, are driven by
intersheet interactions. In particular we observe the pairs
37–58, 16–67 and 21–35 whose side chain atoms are
separated by 3.5–4 Å. The pairs exhibiting the strongest
anticorrelations (25–37, 37–50, 25–65, 11–65, and 52–65)
are indicated by the “2” signs on the correlation map.
Figure 6c displays the intrasheet and intersheet interac-
tions by the yellow dotted lines.

We note that the magnitudes of the observed cross-
correlations increase and the correlated regions broaden if
a subset of dominant modes is taken into consideration.
This is a consequence of the fact that the random fluctua-
tions, which decrease the correlations, are eliminated in
the reconstructed trajectory. The number of all non contigu-

Fig. 5. Shapes of the eigenvectors u1, u2, and u3 associated with the
three slowest modes from GNM. Respective curves (upper three) are
shifted for clarity. The lower curve (dark, solid line) represents the
weighted average of the first three modes.
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ous (i, j) pairs of residues, which yielded an absolute C(i, j)
value above 0.5 in the slowest MD mode were counted—
where i and j are residues belonging to the strands. Results
are presented in Table II for each pair of strands. We have
reported therein the numbers Nc of positively (1) or
negatively (2) correlated residue pairs for each pair of
strands, provided that this number is sufficiently large,
say Nc $ 4. In the table, the strands are ordered in such a
way as to separate the two b-sheets. This table confirms
that the S1 strands {I, II, V} and the S2 strands {III, IV, VI}
undergo correlated motions while the two groups of strands

are anticorrelated. The largest number of anticorrelated
pairs is observed between the strands I and VI. We note
that the residues belonging to the strand III do not show a
noticeable correlations within the strand, while this strand
is in general strongly coupled via intersheet and in-
trasheet interactions to the other strands. This strand
plays indeed a pivotal role, in a sense, being involved in
intramolecular couplings of critical importance for the
overall stability and coherence of the structure. The strand
III residues Lys34–Val36 are indeed found by indepen-
dent GNM calculations, based on fast mode shapes, to be

Fig. 6. (a) Correlation map for
inter-residue orientational motions in
tendamistat. The two axes refer to
residue indices, and contours con-
nect residue pairs exhibiting same
type and strength of correlation C(i,j)
(see Eq. (9)). Red regions are posi-
tively correlated, i.e., undergo con-
certed motions in the same direction;
whereas blue regions are anticorre-
lated, i.e., the corresponding pairs of
residues undergo coupled but oppo-
site direction fluctuations. The cen-
ters of strongest correlation and anti-
correlations are indicated by the “1”
and “2” signs, respectively. (b) Two
groups of residues indicated by the
map (a) to undergo opposite direction
fluctuations, colored red (S1) and
green (S2). Residues Trp18-Tyr20
(magenta) in sheet S1 are active in
the recognition of the a-amylase to
be inhibited. (c) Intrasheet and inter-
sheet interactions (dotted yellow lines)
between residues engaged in strongly
correlated motions. Labels refer to
the residues whose side chains are
displayed. In particular the b-strand
III residues 35–37 play a central role
in mediating intrasheet correlated and
intersheet anticorrelated motions.

TABLE II. Numbers of Residue Pairs With Positive and Negative
Correlations Among the Six b-Strands of a-Amylase Inhibitors†

Strand I II V III IV VI

I 7 (1) 21 (1) 4 (1) 10 (2) 5 (2) 31 (2)
II 21 (1) 9 (1) 19 (1) 16 (2) 18 (2) 19 (2)
V 4 (1) 19 (1) 9 (1) 6 (2) 19 (2) 8 (2)
III 10 (2) 16 (2) 6 (2) 35 (1) 25 (1)
IV 5 (2) 18 (2) 19 (2) 35 (1) 11 (1) 25 (1)
VI 31 (2) 19 (2) 8 (2) 25 (1) 25 (1) 9 (1)
†Only those pairs of strands containing more than 4 (1) or (2) inter-residue correlations
are reported. A threshhold value of uC(i,j)u .0.5 is adopted for selecting correlated or
anticorrelated residue pairs; a-amylase inhibitors from MD trajectories reconstructed
on the basis of the slowest mode.
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the most severely contrained residues of tendamistat,
along with the strand II residue Asn25.

Time Evolution of Molecular Coordinates in the
Slowest Modes

We now focus on the detailed mechanisms of motions
driven by the slowest modes. Insofar as the ms fluctuations
are concerned all three theoretical approaches yield simi-
lar results, but a number of observations signal the
inadequacy of the GNM in the slowest end of the spectrum.
To elucidate this point, we examined in detail the mecha-
nisms of the slowest modes operating in runs MD-1 and
MD-2.

An important observation is that the two MD runs do not
exhibit the same type of dominant mechanism of motion in
their slowest modes. It is worth mentioning that even the
ms fluctuations (of individual residues) that were recon-
structed on the basis of the slowest few modes in the two
runs were quite different, but only their average (shown in
Figure 4 by the bold, dotted curve) were in satisfactory
agreement with analytical results. Consistent with this
observation the detailed conformational motions under-
gone in the runs MD-1 and MD-2 were different, when the
trajectories along the singular axes were observed.

Figure 7a displays the trajectory along the first PA (or
first LSV) determined in the run MD-1. One can see
unambiguously that the molecule undergoes sharp confor-
mational transitions, indicative of jumps between two or
three isomeric states, in agreement with previous observa-
tions for other proteins.5,47 Therefore distinct energy wells
separated by energy barriers are visited. This type of

motions are certainly non-Gaussian, and GNM cannot
describe these. Figure 7d displays the trajectory projected
onto the first two LSVs, and Figure 7b and c describe the
histograms associated with the motions along the first and
second LSVs, respectively. The bimodal probability distri-
bution observed in Part b is consistent with Part a. The
motion along the second LSV, on the other hand, obeys a
unimodal, but still non-Gaussian, distribution. Part d
indicates the possible occurrence of three distinct conforma-
tional states visited throughout the run MD-1, although
these cannot be distinguished by projecting the trajectory
onto the first two LSVs. Snapshots taken at particular
states revealed that the conformational jumps essentially
consist of a rotational isomerization of one or more bonds
at the N-terminal segment, and a rotational motion of the
loops connecting strands I-II, and strands IV-V. A similar
analysis performed for MD-2, on the other hand, yielded
again a bimodal distribution in the slowest mode, although
the transitions were not as sharp and as frequent as those
in Figure 7. A more collective conformational rearrange-
ment, involving larger scale cooperative fluctuations of the
loops was observed in this case. Thus, not the same type of
conformational motions are observed in the two runs. Yet,
in both simulations the motions responsible for the jumps
are rather localized, which conform with singly-hierarchi-
cal motions, rather than multiply hierarchical.47 In sum-
mary, the average quantities from the independent runs
(ms fluctuations or cross-correlations), also evaluated with
regard to analytical results, can be viewed as the major
physically meaningful and statistically reliable results.

Fig. 7. Analysis of the slowest
modes extracted from MD simula-
tions (run MD-1). (a) Trajectory along
the first principal axis (or LSV), (b)
histogram of the motion along the first
LSV, (c) histogram along the second
LSV, and (d) trajectory projected onto
the first two LSVs.
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CONCLUSION

In conclusion, we may state that the analytical ap-
proaches and the simulations yield results that are consis-
tent with each other insofar as the ms fluctuation ampli-
tudes of individual residues (or a-carbons) and their
correlations are concerned. This observation is significant
from the point of view that the neglect of nonlinear effects
and atomic details such as residue-specific potentials (in
the ANM), or even anisotropic effects (in the GNM) do not
significantly affect the observed fluctuation spectrum. A
fast and reliable estimation of the fluctuation distribution
of individual residues in folded proteins can thus be made
by applying the GNM approach, the computational time
cost of which is of the order of seconds, as opposed to days
for MD simulations.

The fact that the ms fluctuations are comparable does
not imply that other details about the dispersion of modes
or mechanism of motion (see below) can also be reliably
estimated from the GNM. The present analysis indeed
stipulates which properties can, and which cannot, be
satisfactorily described by adopting a highly simplified
analytical approach.

The ANM is introduced here as a new analytical ap-
proach in which one of the major deficiencies of the GNM,
the neglect of the anisotropy of fluctuations, is removed.
This requires about one order of magnitude longer compu-
tational time than the GNM, the Kirchhoff matrix being
replaced by a 3n 3 3n matrix of force constants that takes
account of the directional preferences of individual resi-
dues. Yet, the improvement in overall accuracy in compari-
son to MD results (see Fig. 2c), and the additional informa-
tion provided about the directional preferences of
fluctuations, and not only about their amplitudes, are in
favor of its adoption in analyzing biomolecular systems.
We might also recall that the computational time cost of
the ANM is still at least two orders of magnitude lower
than MD simulations.

It is worth noting that the present simulations were
carried out in vacuum. Previous MD simulations have
shown that solvent has two major effects:5 (i) enhancement
of small amplitude conformational motions, giving rise to a
more structured free energy surface and lowering of
energy barriers, and (ii) damping of collective motions
which can be approximated by a suitably adjusted friction
coefficient.47,54 Inclusion of solvent indeed affects the
mechanism of local anharmonic motions, or the occurrence
of isomeric transitions in short solvent-exposed chains
such as polypeptides.55 However, the mechanisms of domi-
nant motions controlled by the subspace of slowest modes
are rather insensitive to solvent.5,47 Additionally, the
correlations of internal motions are similar in different
environments, as demonstrated by Ichiye and Karplus in
their analysis of cross-correlations and co-variances of
atomic fluctuations.21

A direct examination of the MD trajectory reconstructed
with a subset of dominant (slowest) modes shows that the
types of conformational transitions that operate at the
slowest modes regime are not necessarily reproduced in
independent runs. One apparently needs to perform many

runs,25 and simple analytical analyses such as GNM or
ANM or the highly efficient approximate NMA proposed
by Hinsen for example,3 before making conclusive state-
ments about the mechanism of the slowest modes. How-
ever, the present analysis shows that one can safely make
estimates about the size (amplitudes) of motions in the
slowest modes, and their correlations, even by adopting
coarse-grained analytical models like ANM.

Insofar as mean-square quantities such as residue fluc-
tuations or cross-correlations are concerned, GNM and
ANM results indeed appear to be as reliable as the MD
results, despite their inadequacy for describing the nonlin-
ear motions, or the jumps between isomeric minima. The
key point to understand this somewhat controversial and
puzzling agreement between the analytical and numerical
results probably lies in the proper choice of the force
constant g of the analytical approaches. This parameter
directly scales the width of fluctuations, and can be
optimally selected to reproduce the observed amplitudes of
motions. Figure 8 illustrates for example three potential
energy wells about the global minima, one comprising
multiple microstates or conformational substates,4 sepa-
rated by small energy barriers—conforming with the
single-hierarchical energy surface of Go and coworkers47—
and two smooth potentials, harmonic (solid) and anhar-
monic (dotted). The ms fluctuations within the harmonic
well can be construed to equate to those macroscopically
observed in the multimeric well, by proper choice of the
curvature (i.e., g) of the harmonic potential. Inclusion of
anisotropic effects can further account for asymmetry of
the well. In a number of proteins, including the a-amylase
inhibitors presently investigated, the energy landscape
near the global minimum can probably be approximated
by a single well as a first, coarse-grained approach, unless
two or more highly distinct conformational substates (or

Fig. 8. Schematic representation of an energy well controlling the
collective fluctuations in the folded protein. The structured curve is a
realistic energy surface, presumably sampled in MD simulations. The
solid and dotted curves are the best fitting harmonic (GNM) and anisotro-
pic (ANM) potentials, respectively. Note that the amplitudes of fluctuations
near the minimum of the energy minimum (DR2) can be satisfactorily
described by an approximate (GNM or ANM) potential, while the depar-
ture between the curves increases in the case of larger amplitude (DR1)
fluctuations.
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multiply hierarchical energy wells), such as those ob-
served in human lysozyme,47 cAMP-binding protein2 or T4
lysozyme22 are visited under native state conditions.

Finally, on the mechanism of the functional motions of
the a-amylase inhibitor tendamistat, we conclude from
both simulations and analytical calculations that the
dominant mode of motion is the opposite direction fluctua-
tions of the two groups of strands {I, II, V} and {III, IV, VI},
which form the respective sheets S1 and S2. It is worth
noting that the active site residues 18–20 at the N-
terminus of strand II in S1 are strongly correlated with
strand V residues 58–60, which in turn are subject to
strong anticorrelated motions with the S2 strand III
residue 34–37. The latter strand, and in particular its
residues 34–37, plays a central role in mediating the
intersheet interactions (see Fig. 6c). This strand is simulta-
neously engaged in close correlated motions with strand
VI and IV, driving the concerted motion of sheet S2. The
present correlation analysis thus unravels the path of
intramolecular signal transmission, communicating be-
tween the core regions and the recognition sites of the
a-amylase inhibitor tendamistat—a protein representa-
tive of a unique three dimensional fold.
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