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Summary
An analysis of the growth inhibitory potency of 122 anticancer
agents available from the National Cancer Institute anticancer
drug screen is presented. Methods of singular value decomposi-
tion (SVD) were applied to determine the matrix of distances
between all compounds. These SVD-derived dissimilarity dis-
tances were used to cluster compounds that exhibit similar tumor
growth inhibitory activity patterns against 60 human cancer cell
lines. Cluster analysis divides the 122 standard agents into 25
statistically distinct  groups.  The first  eight groups include
structurally diverse compounds with reactive functionalities that
act as DNA-damaging agents while the remaining 17 groups
include compounds that inhibit nucleic acid biosynthesis and
mitosis. Examination of the average activity patterns across the
60 tumor cell lines reveals unique ‘fingerprints’ associated with
each group. A diverse set of structural features are observed
for compounds within these groups, with frequent occurrences
of strong within-group structural similarities. Clustering of cell
types by their response to the 122 anticancer agents divides the
60 cell types into 21 groups. The strongest within-panel group-
ings were found for the renal, leukemia and ovarian cell panels.
These results contribute to the basis for comparisons between
log(GI50) screening patterns of the 122 anticancer agents and
additional tested compounds.
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Introduction
Development of high-throughput screening technologies in
drug discovery has led to dramatic increases in the diversity
of compounds that  can be tested (Gordon et al., 1994;
Ganesan, 1998; Gray et al., 1998) and in the types of targets
available for testing (Monks et al., 1991; Grever et al., 1992;
Boyd and Paull, 1995; Kauver et al., 1995; Chee et al., 1996;
Botstein and Cherry, 1997; Castell and Gomes-Lechon, 1997;
Zhang et al., 1997). Accompanying these advances has been
the development of a diverse collection of general ap-
proaches for mining the large quantity of data generated by
these systems (Marchington, 1995; O’Connor et al., 1997;
Ajay et al., 1998; Bellenson, 1998; Benton, 1998; Gillet et al.,
1998; Sadowski et al., 1998; Shi et al., 1998b,c). Database-
related, information-intensive drug discovery efforts (Myers
et al., 1997) are showing promise in revealing relationships
between drug screening profiles and potential therapeutic
targets. Extending these efforts by further exploration of
relationships between screening profiles and chemical
structures may enhance the discovery of novel chemothera-
peutic agents.

In this paper we re-examine the publicly available data
from the cancer drug discovery program at the National
Cancer Institute (NCI). Our goal is to systematically analyze
the relationship between (i) the growth inhibitory activities
for a set of anticancer agents from the panel of 60 tumor cell
lines; (ii) the structural features of the tested agents; and
(iii) their apparent mechanism of growth inhibitory action
(MOA). Based on the hypothesis that selective in vitro activity
of a compound against cancer cell lines might be predictive of
its activity against the corresponding specific type of human
tumor, the NCI has developed and made available results of
primary drug screens against 60 different human cancer cell
lines (http://dtp.nci.nih.gov). Among other endpoints avail-
able in the NCI’s database, the growth inhibitory activity of
each compound, expressed as the drug concentration (GI50)
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required to inhibit tumor cell growth by 50% compared with
an untreated cell was selected for analysis. Log(GI50) values
for a given compound across all tumor cell lines provide
its activity pattern for comparison with patterns from other
tested compounds. Similarities in patterns of in vitro inhib-
itory activity have been shown to be related to MOAs, modes
of resistance and molecular structure (Boyd, 1995; Boyd and
Paull, 1995; Paull et al., 1995; Hrach, 1997; Myers et al., 1997;
O’Connor et al., 1997; Shi et al., 1998b,c). To date, the NCI
has screened >70 000 chemical compounds and a similar
number of natural product extracts against a panel of 60
different tumor cell lines.

Several algorithms have previously been applied to analyze
activity patterns. These algorithms utilize, in various ways,
the tools of multivariate statistical clustering (Hrach et
al., 1997). As an example, the internet-accessible program
COMPARE (Paull et al., 1989, 1995) uses Pearson correlation
coefficients (PCCs) to extract compounds with screening
patterns similar to a ‘seed’ compound. Applications of back-
propagation neural networks (Weinstein et al., 1992) and
Kohonen self-organizing maps (Koutsoukos et al., 1994)
have demonstrated varying success when predicting MOAs
and grouping compounds based on similar activity patterns.
These methods also complement the COMPARE program by
identifying clusters of ‘seed’ compounds, thus addressing the
important question of whether a ‘seed’ compound appears on
the lists of highly correlated activity patterns for all other
‘seeds’ in the data set. Statistical and artificial intelligence
techniques, including principal component analysis, hier-
archical cluster analysis, stepwise linear regression and
multidimensional scaling, have begun to be applied to
the NCI’s screening data (van Osdol et al., 1994; Shi et al.,
1998a).

Structurally similar compounds can have similar physico-
chemical properties and thus are thought to have similar
biological activities, consistent with the similarity property
principle (Johnson and Maggiora, 1990). For example, a
dramatic coherence between molecular structures and activ-
ity patterns was observed for 112 ellipticine analogs (Shi et al.,
1998c). Detailed crystallographic and NMR studies further
support the similarity property concept by demon- strating
that ligand–receptor interactions are characterized by
complementary shapes and chemical characteristics (Janin
and Chothia, 1990; Clackson and Wells, 1995; Schreiber and
Fersht, 1995; D.G. Covell et al., manuscript in preparation).
Cell-based screening assays represent a complex array of
interactions that is monitored as cell growth or killing [e.g.
log(GI50)]. Differential activity patterns in these measure-
ments can result from the activity of compounds that interact
well, poorly or not at all with one or many targets within the
panel of cell types. Earlier attempts to establish corres-
pondences between activity patterns, MOAs and chemical
structure found general clustering (i) for compounds of

similar chemical structure, and (ii) for compounds classi-
fied as having a similar mechanism of action (MOA), yet
having diverse chemical structures (Shi et al., 1998a). Distant
clustering was also found for compounds similar in chemical
structure but having different MOAs (Shi et al., 1998a).
Earlier studies by Paull et al. (Paull et al., 1995; O’Connor et
al., 1997) demonstrated that anticancer agents having similar
functional groups (e.g. chloroethylating agents, platinum
analogs and nitrosoureas) produce similar activity patterns in
cell-based screens. However, there are some compounds that
display a relatively strong structural similarity, and yet exhibit
drastically different activity patterns. Alternatively, com-
pounds with similar activity patterns can have little structural
correspondence to one another.

The present analysis identifies clusters of anticancer
compounds based on their log(GI50) activity patterns in NCI’s
data for 60 tumor cell lines. The analysis is performed on the
set of 122 standard anticancer agents available in the NCI’s
Developmental Therapeutic Program’s database. Here we
adopt singular value decomposition (SVD) (Harary, 1971;
Golub and Loan, 1989; Berry et al., 1995; Liu, 1997; Bahar et
al., 1998) and hierarchical clustering methods (Sneath and
Sokal, 1973) to cluster the chemotherapeutic agents. Com-
pounds clustered with these methods are to be compared by
their assigned MOAs and their structural similarities.

Methods
Variance-based measures of similarity rely on the spread
in a data set to determine membership within a cluster.
Principal component analysis (PCA), SVD, D-optimal design
and k-nearest neighbor clustering are commonly used as
variance-based methods. These have as their overall goal the
minimization of the noise-to-signal ratio (Giuliani et al.,
1998). The SVD approach has been shown to be a powerful
method to filter noise and enhance the information content
of the original data (Harary, 1971; Golub and Loan, 1989;
Berry et al., 1995; Liu, 1997). Similar to PCA, SVD defines
rotation of axes (principal components) so that columns in
the data matrix maximize their standard deviation with
respect to other columns in the data set. This transformation
yields a new space where the columns of data exhibit maxi-
mum variance (i.e. minimum correlation) with respect to one
other. The original data can be re-expressed approximately as
a linear combination of a few dominant principal compon-
ents. This  new  space, referred to as the SVD space, has
previously been effectively  used, for  example, to classify
words within texts (Berry et al., 1995) and protein structures
with respect to their amino acid composition (Bahar et al.,
1998).

SVD analysis is used here to classify anticancer agents by
examining their log(GI50) values in the 60-dimensional space
of the cancer cell lines. This space is transformed into an SVD
space, where the anticancer agents are represented by activity
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arrays emphasizing their differences. The compounds are
clustered on the basis of their pairwise distances in SVD
space, by using hierarchical clustering algorithms (Sneath and
Sokal, 1973). The calculations discussed below have
been coded into a Fortran program, which is available upon
request. Many of these calculations can also be completed
using the SAS library of utilities.

In general, the SVD of a given matrix A yields three
matrices Λ, U and V which comprise (i) the singular
eigenvalues λ i of A, organized in ascending order in the
diagonal matrix Λ; (ii) the orthonormal transformation
matrix U that defines the relationship between the original
coordinate frame and the SVD frame; and (iii) the normal-
ized representation, VT, of the original matrix in the SVD
space. A can thus be decomposed, hence the term ‘singular
value decomposition’, into the product of   these three
matrices

Amxn = UmxmΛmxmVT
mxn (1)

where the subscripts denote the dimensions of the two-
dimensional matrices and the superscript T indicates the
transpose. In general, the columns of A each represent a
given quantity (here anticancer agents) characterized by m
properties (activity patterns for 60 cell lines), whereas those
of the product ΛVT are the same quantities expressed in the
SVD frame which best describes the similarities/differences
between these quantities on the basis of  their n properties.
In the present application of the SVD method to anticancer
compound screening data, each column of A, conveniently
denoted as ai, is a 60-dimensional vector  describing the
activity pattern of a given drug i (1 ≤ i ≤ 122), expressed in
terms of the log(GI50) values observed against the 60 tumor
cell lines. Therefore the SVD of a 60 × 122 A matrix is per-
formed, using the data set of n = 122 anticancer agents
screened against m = 60 cell lines. The aij element of the A
matrix is then row and column normalized by first sub-
tracting the column average [i.e. the average log(GI50) value
for each compound] and then subtracting the row average (i.e.
the average for each cell line). The resulting relative cytotoxic
potencies are thought to eliminate the differences arising
from the generic characteristics of the particular cell lines
and permits us to emphasize more clearly the differences
among activity patterns of the anticancer agents. The activity
pattern of the ith agent in the SVD space is used to define
its distances from the activity patterns for the remaining
(n = 121) compounds. The activity pattern of  the ith agent
in SVD space is represented by the ith column vT

i of VT

pre-multiplied by Λ, and designated as ai∗ = ΛvT
i such that

the SVD distance between agents i and j is

dij = [(ai* – aj*) (ai* – aj*)]1/2 = [(ΛvT
i – ΛvT

j) (ΛvT
i – ΛvT

j)]
1/2

These SVD distances constitute the basic measure for
clustering the anticancer agents into groups in the present
analysis. The analyzed set includes 122 compounds with six
putative MOAs: 35 alkylating agents, 24 antimitotic agents,
16 topoisomerase I inhibitors, 19 topoisomerase II inhibitors,
16 RNA–DNA antimetabolites and 13 DNA antimetabolites.

Results
The results of clustering compounds according to their
pairwise SVD distances are listed in Table I. Clusters ob-
tained from pairwise distances place compounds with the
most similar activity patterns adjacent to one another. Using
this approach, clusters are ordered such that compounds with
the greatest and least similarities in their SVD distances are
presented first and last, respectively, in Table I. Figure 1
displays the 2-D structures of  the compounds within each
cluster.

Statistical clustering of these patterns was obtained using
the SAS/STAT clustering algorithms. The cubic clustering
criterion (CCC) was selected to determine cluster member-
ship. This criterion estimates the number of clusters based
on minimizing the within cluster sum of squares. The CCC
calculation generates a rough approximation to a ‘goodness
of fit’ measure under the null hypothesis that the data are
sampled from a uniform distribution on a hyperbox (P-
dimensional right parallelpiped). A t-test statistic with one
degree of freedom (t = 3.078, P < 0.05, n = 1) is generated for
testing the null hypothesis that a compound’s SVD distance
pattern is not different from a given cluster (i.e. cannot be
excluded from the cluster). This method has been shown to
help determine cluster number for both univariate and multi-
variate data with small  sample sizes (n ≈ 20). See SAS
Technical Report A-108 for additional details (SAS, 1992).

The results of this analysis find that the 122 standard
agents can be clustered into 25 groups, labeled Groups 1–25,
and listed in Table I. Fifteen of these groups have at least
two members, while the final 10 groups consist of  a single
agent. Figure 1 displays the molecular structures of these
compounds, ordered according to the Groups 1–25 in Table I.
The list of compounds in each group in Table I includes their
putative MOAs and characteristic structural/functional
groups. Multiple compounds within each group cannot be
further subdivided on the basis of  their log(GI50) patterns.
However, structural similarities within clusters can be easily
found by inspection of Figure 1.

Group 1 is composed of 38 compounds consisting pre-
dominantly of alkylating agents (23 compounds), topoisomer-
ase II inhibitors (nine compounds), DNA antimetabolites
(five compounds) and a single RNA–DNA antimetabolite.
Alkylating agents are antitumor drugs that act through
covalent binding of their alkyl groups to cellular molecules
(Pratt et al., 1994; Chabner and Longo, 1996). Many of these
are proposed to attack the N-7 or O-6 atoms on guanine in
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Table I

Compounds ordered according to pattern similarity

Cluster Name NSC MOA Structural group

1 teroxirone 296934 1 epoxide
1 AZQ 182986 1 aziridine
1 CHIP 256927 1 platinum
1 cis-platinum 119875 1 platinum
1 carboplatin 241240 1 platinum
1 hepsulfam 329680 1 alkane sulfonate
1 Yoshi-864 102627 1 alkane sulfonate
1 Busulfan 750 1 alkane sulfonate
1 cyclodisone 348948 1 alkane sulfonate
1 clomesone 338947 1 alkane sulfonate
1 guanazole 1895 6
1 pyrazoloimidazole 51143 6
1 ftorafur (pro-drug) 148958 5
1 hydroxyurea 32065 6 hydroxyurea
1 melphalan 8806 1 nitrogen mustard
1 chlorambucil 3088 1 nitrogen mustard
1 br-propionyl

piperazine
25154 1 nitrogen mustard

1 fluorodopan 73754 1 nitrogen mustard
1 mitozolamide 353451 1 nitrogen mustard
1 BCNU (carmustine) 409962 1 nitrosourea–nitrogen

mustard
1 spirohydantoin

mustard
172112 1 nitrogen mustard

1 methyl CCNU 95441 1 nitrosourea–nitrogen
mustard

1 chlorozotocin 178248 1 nitrosourea–nitrogen
mustard

1 PCNU 95466 1 nitrosourea–nitrogen
mustard

1 CCNU 79037 1 nitrosourea–nitrogen
mustard

1 3-HP 95678 6 hydrazinecarbonthio-
amide

1 5-HP 107392 6 hydrazinecarbonthio-
amide

1 asaley 167780 1 nitrogen mustard
1 amonafide 308847 4 –
1 hycanthone 142982 1 –
1 pyrazoloacridine

(PZA)
366140 4 acridine

1 oxanthrazole 349174 4 anthracene
1 anthrapyrazole

derivative
355644 4 anthracene

1 rubidazone 164011 4 anthracene dione
1 doxorubicin

(Adriamycin)
123127 4 anthracene-

daunorubicin
1 daunorubicin 82151 4 anthracene-

daunorubicin
1 deoxydoxorubicin 267469 4 anthracene-

daunorubicin
1 VP-16 141540 4 podophyllotoxin

2 thio-tepa 6396 1 aziridine
2 triethylenemelamine 9706 1 aziridine
2 dianhydrogalactitol 132313 1 epoxide
2 nitrogen mustard 762 1 nitrogen mustard
2 uracil nitrogen

mustard
34462 1 nitrogen mustard

2 piperazine analog 344007 1 nitrogen mustard
2 piperazinedione 135758 1 piperazine
2 camptothecin

derivative
643833 3 camptothecin

2 camptothecin,
Na salt

100880 3 camptothecin

Cluster Name NSC MOA Structural group

2 menogaril 269148 4 anthracene–
daunorubicin

3 mitomycin C 26980 1 mitomycin
3 porfiromycin 56410 1 mytomycin
3 camptothecin 94600 3 camptothecin
3 camptothecin

derivative
95382 3 camptothecin

3 camptothecin
derivative

107124 3 camptothecin

3 m-AMSA (amsacrine) 249992 4 anthracene
3 camptothecin

derivative
295501 3 camptothecin

3 camptothecin
derivative

606173 3 camptothecin

3 camptothecin
derivative

364830 3 camptothecin

3 camptothecin
derivative

374028 3 camptothecin

3 aminocamptothecin 603071 3 camptothecin
3 camptothecin

derivative
606172 3 camptothecin

3 camptothecin
derivative

606985 3 camptothecin

3 camptothecin
derivative

610457 3 camptothecin

3 camptothecin
derivative

610458 3 camptothecin

3 camptothecin
derivative

618939 3 camptothecin

4 camptothecin
derivative

249910 3 camptothecin

4 camptothecin
derivative

606947 3 camptothecin

4 camptothecin
derivative

606499 3 camptothecin

4 camptothecin
derivative

610456 3 camptothecin

4 camptothecin
derivative

610459 3 camptothecin

4 camptothecin
derivative

629971 3 camptothecin

5 camptothecin
derivative

176323 3 camptothecin

5 camptothecin
derivative

295500 3 camptothecin

6 VM-26 (teniposide) 122819 4 podophyllotoxin
6 mitoxantrone 301739 4 anthracene

7 aphidicolin glycinate 303812 6 aphidicolin

8 tetraplatin 363812 1 platinum
8 carboxyphthalato-

platinum
271674 1 platinum

8 acivicin 163501 5 amino acid analog
8 dichlorallyl lawsone 126771 5 napthoquinone
8 thioguanine 752 6 guanine
8 alpha-TGDR 71851 6 guanine
8 beta-TGDR 71261 6 guanine
8 inosine

glycodialdehyde
118994 6 guanine

8 5-azacytidine 102816 5 cytidine
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the DNA major groove, and to cross-link DNA strands (Pratt
et al., 1994; Chabner and Longo, 1996). Cross-linked
products are removed by an alkyltransferase DNA repair
enzyme, via a repair mechanism known to be deficient in
certain tumors. The first two members of this group are
compounds bearing two or more aziridine or oxirane groups
(296934 and  182986). These are analogs of the putative
closed-ring intermediates of the nitrogen mustards, but are
believed to be less reactive (Chabner and Longo, 1996). Three
of the five platinum containing compounds are found next
within this group (119875, 256927 and 241240). The next set
of compounds in this group is composed of alkyl alkane
sulfonates (329680, 102627, 750, 348948 and 338947).
Busulfan (750) has been shown to attack the N-7 atom of
guanine, but its ability to cross-link DNA is not certain. Pyra-
zoloimidazole (51143) and guanazole (1895) appear next,
and are highly reactive DNA antimetabolites with nitrogen
containing ring structures. The prodrug ftorafur (148958)
appears next. The remaining members of Group 1 fall into
two structural classes: the first composed of nitrosoureas,
either alone or in combination with nitrogen mustards or
guanidine groups (32065, 8806, 3088, 25154, 73754, 353451,
409962, 171112, 95441, 178248, 95466, 79037, 95678, 107392
and 167780), and the second composed of anthracyclines,
anthracenediones and epipodophyllotoxins (308847, 142892,
366140, 349174, 355644, 164011, 123127, 82151, 267469 and
141540). The nitrosourea compounds bearing both chloro-
alkylating and carbamoylating (carbamoyl: –R-N–C=O)
groups can produce interstrand cross-links in DNA by
preferentially attacking the O-6 position on guanine. The
greater antitumor activity of the compounds in the modified
nitrosourea class, when compared with the parent nitroso-
urea, has been attributed partly to their greater lipophilic
character (Chabner and Longo, 1996). The latter subclass of
compounds in this group are doxorubicin analogs, thought to
inhibit DNA topoisomerase II and protein kinase C mediated
signal transduction pathways (Chabner and Longo, 1996).
The structural similarity of these latter compounds originates
in their anthracene scaffold. The various congeners in this
group do not appear to effectively affect growth inhibitory
behavior, since they all exhibit similar activity patterns in the
SVD space when compared with the complete set of 122
compounds. Three of the compounds within the group of
anthracyclines share a dimethyl or diethyl amine group
(308847, 142892 and 366140). Amonifide (308847) is a topo-
isomerase II inhibitor that acts as a DNA intercalator or
binder (Chabner and Longo, 1996), while pyrazoloacridine
(366140) and hycanthone (142982) share an acridine moiety
which may contribute to their similar activities.

The second group   of compounds shares structural
similarity with members of Group 1, but has SVD distance
patterns different from the first group. Three of these
compounds have aziridine or oxirane groups (6396, 9706 and

Table I (continued)

Cluster Name NSC MOA Structural group

8 cyanomorpholino-
doxorubicin

357704 1 anthracene-
daunorubicin

8 morpholinodoxo-
rubicin

354646 3 anthracene–
daunorubicin

8 N,N-dibenzyl
daunomycin

268242 4 anthracene–
daunorubicin

9 macbecin II 330500 6 lactone
9 rhizoxin 332598 2 macrolide
9 maytansine 153858 2 macrolactam
9 vinblastine sulfate 49842 2 vinca alkaloid
9 halichondrin B 609395 2 polyether macrolide
9 trityl cysteine 83265 2 triphenyl
9 bisantrene HCL 337766 4 anthracene
9 dolastatin 10 376128 2 modified peptide

10 L-alanosine 153353 5 aspartate analog
10 N-(phosphonoacetyl)-

L-aspartate
224131 5 aspartate analog

10 5-fluorouracil 19893 5 uracil analog
10 brequinar 368390 5 folate analog

11 taxol 125973 2 taxane
11 taxol derivative 608832 2 taxane

12 colchicine derivative 33410 2 colchicine
12 allocolchicine 406042 2 colchicine
12 thiocolchicine 361792 2 colchicine

13 colchicine 757 2 colchicine
13 vincristine sulfate 67574 2 vinca alkaloid

14 methotrexate 740 5 folate analog
14 methotrexate

derivative
174121 5 folate analog

15 L-ornithine 633713 5 folate analog
15 trimetrexate 352122 5 folate analog

16 thiopurine 755 6 purine

17 5-aza-2′-deoxycytidine 127716 6 cytidine

18 2′-deoxy-5-
fluorouridine

27640 6 uridine

19 ara-C 63878 6 uridine

20 5,6-dihydro-5-
azacytidine

264880 5 cytidine

21 pyrazofurin 143095 5 pyrazofurin

22 cyclocytidine 145668 6 cytidine

23 Baker’s antifol soluble 139105 5 folate

24 an antifol 623017 5 folate analog

25 aminopterin
derivative

184692 5 folate analog

25 aminopterin
derivative

134033 5 folate analog

25 aminopterin
derivative

132483 5 folate analog

SVD analysis of cell screening data

83



132313), four compounds are nitrogen mustards (762, 34462
and 344007) and one is a doxorubicin analog (269148). The
diepoxides in the oxirane, dianhydrogalactitol (132313), are
presumably responsible for its antitumor activity. Also within
this group are two camptothecin analogs (643833 and

100880) and piperazinedione (135758), two of these com-
pounds exhibiting an alkylation capacity probably because of
their chloride groups.

The  third group (Group 3) comprises 16 compounds,
including two mitomycins (26980 and 56410), the only known

Figure 1

Two-dimensional representations of the chemical structures of the 122 compounds analyzed in this study. Compounds are ordered into
25 groups as described in the text. Structurally similar compounds are displayed together within each group. This figure has been
prepared using the ISIS/DRAW software package.
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Figure 1(continued)
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Figure 1(continued)
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natural compounds containing an aziridine ring (Chabner
and Longo, 1996). These compounds alkylate guanine at the
N-2 position in the DNA minor groove (Chabner and Longo,
1996) and differ from one another only by a methyl group.
With the exception of the topoisomerase II inhibitor 249992,
the remaining compounds in this group are camptothecin
analogs that are thought to inhibit the DNA gyrase enzyme
topoisomerase I. The strong structural similarity within the
camptothecin derivatives is thus also exhibited in their SVD
distance patterns. Groups 4 and 5 consist of six and two
camptothecin analogs, respectively. The cellular activities of
the compounds in these two groups are sufficiently different

from the larger set in Group 3 to include them as separate
groups. The structural features responsible for this different
activity are not clearly apparent. These compounds may
exhibit similar activity patterns on the basis of solubility, or
cell permeability.

Group 6 consists of only two compounds, the podo-
phyllotoxin Teniposide (122819) and the topoisomerase II
inhibitor 301379. Although both of these compounds share
structural similarity and activity patterns with the alkylating
compounds in Group 1, their location adjacent to the group
of topoisomerase I agents suggests that their structural differ-
ences produce a distinctly different activity pattern.

Figure 1(continued)
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Cluster 7 is a singlet, composed of aphidicolin glycinate
(303812). Although this compound is thought to be a DNA
polymerase inhibitor, it shares structural similarity with the
camptothecin family, and its placement in a cluster near the
camptothecin analogs in Groups 3, 4 and 5 suggests that
its cellular activity may also mimic that of topoisomerase I
inhibitors.

Twelve compounds are found in Group 8. Included in this
set are the platinum containing, DNA intercalating com-
pounds tetraplatin (363812) and carboxyphthalatoplatinum
(271674). These compounds contain a stabilizing cyclohexane
group that may contribute to their distinctive activity patterns
when compared with the three platinum containing com-
pounds in Group 1. Seven nucleoside analogs appear within
this group (163501, 126771, 752, 71851, 71261, 118994 and
102816), most of which share a guanine or uracil moiety linked
to a pentose. These compounds are thought to be directly
incorporated into DNA (Myers et al., 1997). The antibiotic
acivicin (163501) and dichloroallyl-lawsone (126771) are
thought to act as an inhibitor of pyrimidine biosynthesis, and
their location within the family of nucleoside analogs is
reasonable. The three doxorubicins that complete this group,
morpholinodoxorubicin (354646), cyanomorpholino-doxo-
rubicin (357704) and N,N-dibenzyl duanomycin (268242),
share  a unique hexopyranosyl moiety. The  two platinum
containing alkylating agents and the three doxorubicin
analogs act by directly damaging DNA, while the remaining
compounds in this group are inhibitors of nucleotide syn-
thesis, acting as DNA/RNA antimetabolites.

The antitubulin agents are found to cluster into five groups.
The first group (Group 9) is composed of six antitubulin
agents (330500, 332598, 153858, 49842, 609395 and 376128),
one topoisomerase II inhibitor (337766) and trityl cysteine
(83265). The second group (Group 11) includes taxol
(125973) and  a taxol derivative (608832). The third and
fourth groups (Groups 12 and 13, respectively) include the
colchicines (757, 67574, 406042, 361792) and 33410. These
compounds show weak pattern similarity to other anticancer
agents, which suggests that these antitubulin agents share
similar growth inhibitory mechanisms in the cell screen.

Group 10, which has an activity pattern that places it
between the antitubulin Groups  9 and 11, consists  of a
nucleoside analog (19893), two amino acid analogs (153353
and 224131) and a folate analog (368390). Group 10 is the
first cluster of compounds that lack close SVD distances to
members of Groups 1–8. Thus its activity pattern lacks near
SVD distances to groups containing alkylating agents and
topoisomerase I and II inhibitors, with close SVD distances
restricted mostly to members within its group. As will be
shown later, this type of activity pattern may reflect agents
that primarily act as inhibitors of nucleotide biosynthesis,
rather than as DNA damaging agents.

An equally distinct activity pattern is also found for the

antifolate compounds composing Groups 14 and 15. Group
14 consists of methotrexate (740) and the folate analog
(174121), while Group 15 includes the antimetabolites 633713
and 352122. It should be noted that in general, clustering of
compounds in this subgroup is based largely on their SVD
distance dissimilarities, rather than similarities, to the other
members in the set of 122 compounds.

Groups 16–22 all comprise single compounds, all of which
are nucleosides that act as antimetabolites of nucleotide bio-
synthesis. As with the folate analogs discussed above, their
activity patterns are sufficiently unique for these compounds
to share no pattern similarities with any of the standard 122
agents.

Folate analogs complete the final three groups. Groups 23
and 24 consist of single compounds (139105 and 623017,
respectively), while Group 25 consists of three folates
(184692, 134033 and 132483). These latter RNA–DNA anti-
metabolites have alcohols or ethers substituted at positions
C-7 or C-11 of the parent compound that may contribute to
their increased water solubility and unique activity pattern.

The results described here are consistent with earlier
classifications by Koutsoukos et al. (1994) and van Osdol
et al. (1994) that divided these compounds into two large
clusters. Our analysis finds a similar division of compounds,
while providing further subclustering of  compounds within
these two major divisions. The largest division consists of
compounds with the most similar activity patterns, com-
pounds which appear at the top of Table I, comprised
primarily of DNA-damaging agents (Groups 1–8). Com-
pounds in the lower portion of Table I comprise the second
major division and act by targeting a biosynthetic pathway or
part of the mitotic machinery.

Each of the groups described above can be further
examined for their average activity patterns across the 60
tumor cell lines. Figure 2 displays the mean activity for the 25
different groups across all 60 tumor cell lines. These results
provide an indication of the diversity of activity patterns
associated with the 25 clusters identified above, and can be
used to identify which groups of compounds are more or less
active against individual cell lines or within panels of cells.
The results in Figure 2 are displayed according to the cluster
order in Table I, from Group 1 to Group 25. The average
sensitivity  of the 60 tumor cells against the compounds
within each cluster is indicated by color. Tumor cells with
progressively more sensitive activity patterns when compared
with their group averages are shown in yellow to orange to
red. Cells with progressively less sensitivity are shown from
pale blue to dark blue. Cells with activity patterns near their
group averages are shown in light green.

Examination of the mean activity patterns for the 25
clusters obtained from the cubic clustering algorithm in the
SAS Technical Report (SAS, 1992) can be used to qualitative-
ly assess differences between each group. The agents within
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Figure 2

Average activity across the 60 cell lines for compounds in each of the 25 groups. Panels of cells are ordered from bottom to top as
follows: CNS, PROSTATE, MELANOMA RENAL, LEUKEMIA, OVARIAN, BREAST, COLON and NLC. Groups with a positive mean activity
pattern are displayed from least, to intermediate, to greatest, in orange, red and brown, respectively. Groups with negative mean activity
patterns are shown, from least to greatest, in light blue, blue and dark blue, respectively. Groups with mean activity patterns near zero
are shown in green.
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Groups 1–3 exhibit a uniformly weak mean activity pattern
across all 60 cell types, as indicated by the near-baseline light
green color for all cell types. Groups 4 and 5 begin to exhibit
a more diverse activity pattern, with a greater sensitivity
(orange color) to the panel of CNS cells, as well as selected
RENAL, LEUKEMIA and BREAST cells. Group 4 is com-
posed of five camptothecin analogs that have an apparent,
albeit weak, selectivity for the CNS panel of cells, with a
strong activity against the single BREAST-ADR cell line.
Groups 6 and 7 also have a relatively uniform activity pattern
with the exception of an insensitivity to RENAL-ACHN,
RENAL-UO-31 and OVARIAN-OVCAR5.

Group 8 has a diverse activity pattern with high sensitivity
to MEL-SKMEL2, BREAST-HS578T, COLON-COLO205,
COLON-HCC2998, COLON-HT29 and with low sensitivity
to RENAL-ACHN, RENAL-CAKI-1, RENAL-UO-31,
OVARIAN-OVCAR4 and BREAST-ADR. Groups 9–13, the
antitubulin active agents, display high sensitivity to most of
the COLON tumor cells, and a variable sensitivity to
BREAST  and MELANOMA tumor cells. Groups 14–16
showed a low sensitivity within the BREAST panel and
variable sensitivity to cells within the COLON panel. Group
17 displays a consistent sensitivity against most of the cells
within the BREAST and COLON panels. The single com-
pound in Group 18 is uniformly sensitive to the BREAST
panel, while Groups 19–25 exhibited a widely diverse range of
activity patterns, with both sensitive and insensitive cellular
activity patterns. Cells with the least sensitivity to the 122
standard agents are: NLC-EKVX, NLC-H226, BREAST-
T47D, -HS578T and -MDA231,   OVARIAN-OVCAR4,
RENAL-RXF393 and CNS-SNB75.

Our analysis can be used to cluster members of the 60 cell
panel according to their response to the 122 standard anti-
cancer agents. In contrast to the previous analysis, where 122
agents were examined for their activity pattern across the 60
cell lines, a similar analysis can be performed whereby the
60 cell lines are examined for their activities against the 122
standard agents. Clustering of the cell types on this basis
can be used to identify each cell type’s differential response
to these standard anticancer agents.  Fifteen clusters are
obtained using the cubic clustering analysis (CCC) within the
SAS Technical report. Figure 3 displays a cladogram for
clusters obtained in this analysis, with each branch labeled
and color coded according to cell type. Cells are initially
separated into two major branches, with one branch con-
sisting of 15 cell types, the remaining 45 cell types appearing
in the other major branch.

The smaller of the two major branches appears at the
rightmost portion of Figure 3, and is subdivided into four
clusters. The largest of these four clusters consist of RENAL
cell types, with UO-31, 786-0, ACHN, CAKI-1 and RXF-393
along with two MELANOMA cell lines, LOX-IMVI and
M14. Four of the five RENAL cells in this panel are know to

exhibit multidrug resistance (MDR). MDR is a resistance
modulator for many chemotherapeutic agents associated
with either an increased expression of the P-170 membrane
glycoprotein MDR1 or the presence of the multidrug
resistance protein (Lee et al., 1994; Alvarez et al., 1995). Both
of these mechanisms act by lowering the effective drug
concentration, enhancing drug efflux (Chabner and Longo,
1996) and reducing drug efficacy. The remaining three sub-
branches within this major branch are composed of four
LEUKEMIA, two NLC, one CNS and one MELANOMA
cell type. The LEUKEMIA cell line has the greatest average
sensitivity in mean deviation (∆x = [log GI50] – <log GI50>) for
the 122 standard agents. The LEUKEMIA cell type SR
appears as a singlet, thus having no comparable cell type with
a similar response to the 122 standard agents.

The larger of the two major branches found in this analysis
is clustered into four sub-branches, which are further divided
into 17 branches. The leftmost sub-branch (as viewed in
Figure 3) is divided into seven clusters. The largest cluster in
this group consists of seven cell types, appearing as the
leftmost branch of the cladogram. This cluster includes three
OVARIAN, two NLC and one MELANOMA cell type. Ad-
jacent to this cluster are four branches comprising only a
single cell type: (RE)SN12C, (CNS)SF-268, (BR)BT-549 and
(ME)MALME-3M. Two BREAST cell types (T-47D and
MCF7) along with the LEUKEMIA cell line RPMI-8226
appear in the next cluster. Membership in this leftmost
sub-branch is completed by a cluster comprising only two
OVARIAN cell types (SK-OV-3 and OVCAR-8) and the
singlet (NLC)HOP-92. The remaining clusters in this major
sub-branch consist primarily of NLC, COLON, BREAST
and MELANOMA cell types. Within the clusters formed by
these cell types, a clear separation according to these panels is
not apparent based on their response to the 122 standard
agents. An apparent coherence between the COLON,
BREAST and LEUKEMIA panels is clearly indicated;
however, the basis for this clustering is not evident. These
results indicate that many tumor cell types, both within and
between different panels, exhibit similar sensitivities to the
set of 122 compounds studied here. Additional studies with
a larger set of test compounds will be needed to more
thoroughly determine which cell types share the most similar
response patterns.

Prediction of MOAs
Mechanism of action classifications can be based on
applications of a wide range of statistical tools (Harary,
1971; Golub and Loan, 1989; Berry et al., 1995). The results
in Table I show that there is a substantial similarity between
the clusters of compounds based on GI50 activity patterns
and their classification based on their previously assigned
MOAs. Yet, subclusters interspersed between clusters of a
given MOA are observable, which call for a more systematic
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analysis of the degree of correlation between the GI50 data
and MOAs. To this aim we performed the following analysis:
mean activity fluctuation vectors in the SVD space were
found for each of the six MOAs using

<a∗ >MOA = Σiai∗ /NMOA (2)

Here NMOA is the number of agents exhibiting a given MOA,
and the summation is performed over this particular subset
of agents. The average activity patterns are thus obtained for
each MOA. The departure of the behavior ai∗ of individual
agents from these averages are examined for an assessment of
the accuracy of the MOAs assigned to the different agents.
The deviation of each drug from the mean activity fluctu-
ation vector for the six MOA classes is thus

∆ai*MOA= ai* – <a*>MOA (3)

The smallest of the six distances obtained for each drug is
used to identify its most likely MOA. Application of this test
to all compounds in the training set of 122 standard agents
shows that the correct MOAs are assigned with an average
accuracy level of  96.7%. Column 2 in Table II summarizes
the results for the six different MAOs. Weinstein et al. (1992)
obtained an accuracy level of 91.5% by using a neural net-
work model and 85.8% by linear discriminant analysis.

The accuracy of the MOA assignments for anticancer
agents has additionally been examined by jack-knife tests.
The jack-knife test, also called the leave-one-out test (Mardia
et al., 1979), is a method often utilized for small samples
which cannot be divided into training and testing sets without

Figure 3

Cladogram of SVD distances for the 60 cell types determined from the activity data for the standard 122 anticancer agents. Branch labels
are colored according to cell panels: black, non-small cell lung carcinoma (NLC); light green, COLON; magenta, LEUKEMIA; red,
OVARIAN; dark green, RENAL; brown, MELANOMA; light blue, PROSTATE; black, CNS. (Note that the color black has been used for both
NLC and CNS.) The abbreviations for each panel also appear in the label for each branch. The GROWTREE utility from the GCG software
package has been used to generate this figure. Cluster assignments, from left to right, are as follows: Cluster 1: (ME)UACC-62,
(OV)OVCAR-5, (OV)OVCAR-4, (NLC)NCI-H322M, (OV)IVGROV1, (NLC)A549/ATCC, (RE)SN12C. Cluster 2: (CNS)SF-268. Cluster 3:
(BR)BT-549. Cluster 4: (ME)MALME-3M. Cluster 5: (BR)T-47D, (BR)MCF7, (LE)RPMI-8226. Cluster 6: (OV)SK-OV-3, (OV)OVCAR-8. Cluster
7: (NLC)HOP-92. Cluster 8: (ME)SK-MEL-5, (NLC)EKVX, (RE)TK-10, (CNS)SNB-19, (CO)SW-620, (LE)K-562. Cluster 9: (CO)HCT-15.
Cluster 10: (PR)PC-3, (BR)MDA-231. Cluster 11: (BR)HS-578T, (CO)HT29. Cluster 12: (BR)MDA-N, (BR)MDA-435, (OV)OVCAR-3,
(CO)COLO-205, (CO)HCC-2998, (CNS)SF-295. Cluster 13: (PR)DU-145. Cluster 14: (NLC)NCI-H226, (NLC)NCI-H23, (RE)A498,
(ME)SK-MEL-28, (NLC)NCI-H460, (CNS)U251. Cluster 15: (CNS)SNB-75. Cluster 16: (ME)SK-MEL-2, (CO)KM12, (CO)HCT-116. Cluster
17: (BR)NCI/ADR. Cluster 18: (ME)M14, (RE)RXF-393, (MEL)LOX-IMVI, (RE)CAKI-1, (RE)ACHN, (RE)786-0, (RE)UO-31. Cluster 19: (LE)-
MOLT-4, (LE)CCRF-CEM, (ME)UACC-257, (NLC)HOP-62. Cluster 20: (LE)SR. Cluster 21: (CNS)SF-539, (LE)HL-60(TB), (NLC)NCI-H522.
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loss of information. In this procedure each compound to be
tested is removed from the training data set and the identi-
fication of  the activity fluctuation ∆ai∗ MOA for each MOA
is carried out using the GI50 data of the remaining 121 drugs.
The most  probable MOA of the test compound is  then
predicted using the same distance criteria (equation 3), with
the basic difference that the mean fluctuation vectors
<a*>MOA are now extracted from a set of data excluding the
test compound. The average accuracy level reached by this
method was 84.4%. A summary of these results is presented
in the third column of Table II. The mispredicted compounds
and their predicted MOAs are listed in Table III. Most of the
19 mispredicted compounds were classified as topoisomerase
II agents or DNA–RNA antimetabolites, with the majority of
these agents predicted to behave as alkylators. Since topo-
isomerases act to create covalent damage in DNA, their
functional activity may be similar to alkylating agents.

Discussion
NCI’s 60 cell line screening assay provides a measure of
growth inhibition for human cancer cells exposed to
candidate anticancer compounds. Activity data accumulated
in these screens can be used to group agents that exhibit
similar activity patterns across a broad variety of tumor cell
lines. Compounds grouped according to pattern similarities
can be further examined for possible relationships between
their activities, their chemical substructures and/or their
MOAs. The results presented here apply the standard
statistical method of SVD to the log(GI50) data to define
measures of distances between compounds in a space that
best distinguishes   their   similarities   and   dissimilarities.
Hierarchical clustering of these SVD-derived distances
divides these 122 compounds into 25 groups. The first eight
groups are predominantly formed by DNA-damaging agents,
while the latter 17 groups (9–25) mostly consist of agents that

inhibit nucleic acid biosynthesis or mitosis. Compounds in
the first class comprise MOAs assigned as alkylators, and
inhibitors of topoisomerases I and II, along with a few DNA
antimetabolites, while the latter class is dominated by anti-
mitotic agents and antimetabolites.

DNA damaging agents (Groups 1–8), when observed
together, exhibit strongly similar activity patterns. Agents
such as DNA alkylators and DNA metalators (platinum
agents) are equally effective against slowly dividing or
non-dividing cells (termed Go cells). Since strong pattern
similarities are observed among alkylators and platinum
analogs, it is reasonable to conclude that these compounds
have comparable activities against all cell types, as evidenced
by the uniform activity pattern for these groups. Thus com-
pounds that act directly on DNA, either by cross-linking or
less directly by inhibiting enzymes responsible for processing
DNA (i.e. unwinding), fall into this first group. While alkyl-
ating agents would be expected to be included in the class
of DNA-damaging agents, the present finding that topo-
isomerase inhibitors behave similarly to alkylating agents is
unexpected. However, inhibition of topoisomerases result in
DNA damage, with repair modulated by the impact of the
damage. Earlier studies have found that some topoisomerases
are constitutively expressed at relatively constant levels
throughout the cell cycle, even in cells that are not actively
dividing (Hwang et al., 1989). Thus inhibitors of topoisomer-
ases may potentially be active in tumors that have low growth
fractions (Chabner and Longo, 1996) and as a result exhibit
cytotoxic behavior similar to alkylating agents.

The second major class of compounds identified in our
analysis acts against the enzymatic machinery required for
cell division. Most of these compounds inhibit purine or

Table II

Performance of SVD analysis for determining MOA*

MOAa Success %

Training set Prediction set

1 (35) 97 97
2 (13) 92 85
3 (24) 96 96
4 (15) 100 87
5 (19) 100 63
6 (16) 94 63
Mean (122) 96.7 84.4

Each % success represents the correctly predicted compounds for each
MOA [e.g. all 15 of the topoisomerase II inhibitors were predicted
correctly in MOA class 4 for the training set, while 87% (n = 13 of 15)
of these agents were correctly predicted in the jack-knife procedure].
a1, alkylating; 2, antimitotic; 3, topoisomerase I inhibitors; 4,
topoisomerase II inhibitors; 5, RNA–DNA antimetabolites; 6, DNA
antimetabolites.

Table III

MOA classification for incorrectly predicted MOAs

NSC no. Name Assigned
MOA

Predicted
MOA

357704 cyanomorpholinodoxorubicin 1 3
153858 maytansine 2 6
67574 vincristine sulfate 2 6
354646 morpholinodoxorubicin 3 4
268242 N,N-dibenzyl daunomycin 4 1
366140 pyrazoloacridine 4 1
148958 Ftorafur 5 6
102816 5-azacytidine 5 4
264880 5,6-dihydro-5-azacytidine 5 1
174121 methotrexate derivative 5 6
139105 Baker’s soluble antifol 5 2
132483 aminopterin derivative 5 3
623017 an antifol 5 6
63878 ara-C 6 1
27640 2′-deoxy-5-fluorouridine 6 1
127716 5-aza-2′-deoxycytidine 6 4
330500 Macbecin II 6 1
95678 3-HP 6 1
32065 hydroxyurea 6 1
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pyrimidine biosynthesis or act as antitubulin agents. Evi-
dence to support this claim can be found in the crystallo-
graphic complexes between biosynthetic enzymes and ligands
that are either identical to those included in the set of 122
compounds or close structural analogs. Although it is not
our intention here to present a systematic analysis of struc-
tural data in support of this claim, the Appendix summarizes
our survey of the crystallographic database of proteins
complexed with ligands that bear strong structural similar-
ity to many of the antimetabolite agents in the set of 122
compounds.

A strong correspondence was not observed between
specific MOAs of compounds assigned to each cluster. For
example, alkylating agents and topoisomerase I and II inhib-
itors appear in most of the first eight clusters. The results of
this analysis are, however, sufficiently meaningful to yield an
MOA prediction accuracy of >84%. Inspection of the sub-
clusters obtained from this analysis finds compounds that
both share and lack structural similarity.

Many approaches are available for classification of com-
pounds by chemical structure (Johnson and Maggiora, 1990;
Martin and Willet, 1998). Some approaches are based on
one-dimensional (1-D) global features such as polarizability,
molecular weight and number of hydrogen bond donors/
acceptors (Shemetulskis et al., 1995; Cummins et al., 1996).
Alternative approaches attempt to maximize a selection of
2-D and 3-D indices assigned to each compound (Good
and Lewis, 1997; Lewis et al., 1997; Weininger et al., 1997).
Some of the more commonly used descriptors are based
on chemical formula (Weininger et al., 1997), 2-D topological
similarity (Burden, 1989; Brown and Martin, 1996; Randic,
1997; Pearlman et al., 1998) and 3-D superposition (Miller,
1995). Using sets of indices representative of these descrip-
tors, compounds can be assigned a ‘fingerprint’ which can be
used for assessing similarities within groups of  compounds
(Gillet and Smith, 1998). Clusters of the 122 compounds
examined here, based on a set of 54 1-D descriptors available
in the Cerius package and based on 2-D SMILES descriptors,
found no statistically significant correlation with the activity
patterns from the screening assay. Taken separately or to-
gether, no combination of these 1-D or 2-D descriptors could
be found to produce a statistically significant correlation with
the activity patterns observed for the 122 agents examined
here. Although examination of Figure 1 provides clear evi-
dence that many compounds within each group have common
substructural features, a systematic means of assigning the
compounds to these groups, on the basis of 1-D and 2-D
descriptors alone, was not apparent. These results are
consistent with widespread observations such as those of
Brown and Martin (1996), where small chemical modifica-
tions can result in quite different biological responses. The
family of camptothecins offers a clear example of such be-
havior, i.e. small differences in the parent structure resulted

in quite different activity patterns. Our results emphasize the
importance of assessing structural information together with
screening data to assess biological activity.

One important question arises about studies such as that
presented here: what is the effect of data errors on the results?
Single compounds, such as those clustered in Groups 16–24
above, are easily distinguished in this type of analysis. Hier-
archical clustering of SVD distances alone identifies these
singlets on the basis of their position in a separate branch
of the tree. The additional classification based on pairwise
differences in SVD distances with respect to the whole set of
compounds can be further used to determine whether com-
pounds isolated in a single branch of the tree have an
important different activity pattern or lack any such feature.

Measurement errors that appear in the reported log(GI50)
values represent another type of error. These errors result
from experimental conditions as well as errors in data re-
porting. In an attempt to address the importance of  these
types of errors on our results, the current data set was
perturbed with random noise and the SVD distances were
recalculated. Figure 4 displays the results of perturbing the
current set of log(GI50) values by an error that ranges from
zero to 40%. The ordinate in Figure 4 represents the correla-
tion coefficient (Snedecor and Cochran, 1980) between the
matrix of SVD distances calculated for the unperturbed and
perturbed data sets. There we see that perturbing the existing
data with 20% error yields an SVD distance matrix whose
entries are still correlated with the original data with a
correlation coefficient of 0.9. By contrast, a 40% error
produces a correlation coefficient near 0.7. From this analysis
we believe that data error in the range of 10–20% should yield
results extremely similar to those reported here. The actual
error in these data is difficult to establish. An estimate of the
maximum error can be obtained by calculating the coefficient
of variation [C.V. = σ/ log(GI50)] for the log(GI50) values
obtained for each compound. The variance (σ) is estimated
therein as the squared sum of xij calculated in equation (3).
This method yields a coefficient of variation of  0.87 (or a
percentage error of 13%), which according to Figure 4
corresponds to a correlation coefficient of 0.95. We conclude
that the results of our analysis are robust enough to sustain
errors lower than 15% without significant degradation. The
experimental data used in our study include results from
multiple replicate analysis performed between two to  50
replicates, which would reduce the measurement noise.

Based on the above observation that selected cell types
could be clustered according to their response to the 122
standard agents, we explored whether differences in SVD
distance clusters would occur from analyses based on subsets
of selected cell types that are known to exhibit MDR. Based
on the relative expression of MDR1 mRNA and the immuno-
cytochemical characterization of P-glycoprotein expression
(Wu et al., 1992) eight MDR1 expressing cell types  are
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identified: HCT-15(CO), SF-295(CNS), HOP-62(NLC),
UO-31(RE), A498(RE), ACHN(RE), CAKI-1(RE) and
RXF-393(RE). This selection conforms most closely to those
cells exhibiting the highest rhodamine efflux measurements
as  posted  on the Developmental Therapeutics’ web page
(http://dtp.nci.nih.gov). Clustering analysis was performed
using (i) the log(GI50) values from the eight MDR1 expressing
cell lines and (ii) the log(GI50) values from the 52 non-MDR1
expressing cell lines in the screen. The latter analysis clustered
compounds in a qualitatively similar way to that obtained for
the complete set of 60 cell lines. The analysis performed on
the eight MDR1 expressing  cells found that the activity
patterns within this group had similar SVD distances, and
their activity pattern with respect to their response to the 122
standard agents was quite similar to that found for the
previously classified DNA-damaging agents. In particular,
the antitubulin agents found in Groups 9, 11, 12 and 13
exhibit SVD distances that are similar to the members of the
DNA damaging agents in Groups 1–8. In addition to this
subset of antimitotic agents, the antimetabolites found in
Groups 14–25 also display SVD distance patterns that reflect
patterns closely resembling that of the DNA damaging
agents. This result is consistent with the view that MDR is
associated with the increased efflux of etoposides, anthra-
cyclines (topoisomerase II inhibitors), colchicines and vinca
alkaloids (antimitotic agents) (Pratt et al., 1994; Chabner
and Longo, 1996), and also demonstrates that agents that
inhibit nucleotide biosynthesis are also affected. The result of
multi drug resistance is a more uniform activity pattern across
all cell panels, a feature characteristic of DNA damaging
agents.

The results presented herein can be contrasted with those
available from the web-accessible program COMPARE. The
SVD distances, used in our procedure, and the PCCs, used in
COMPARE, both represent measures of similarity between
activity patterns in the tumor cell screen. A calculation of the

correlation coefficient between these two measures is statistic-
ally significant (r = 0.51, P < 0.001). A scatter plot of PCC
versus SVD distances finds the correlation to be strongest
for the high values of PCC (PCC > 0.75) and low SVD
distances. Consistent with this observation, compounds with
high PCC values also appear in our SVD-derived cluster sets.
As the PCC values become lower and SVD distances become
greater, their correlation becomes weaker, albeit statistically
significant. The major difference between the two methods
involves identification of cluster membership.  The CCC
clustering criterion used in our analysis grouped these
standard agents into 25 distinct clusters. The COMPARE
program generates a PCC for a selected ‘seed’ compound.
Since a PCC above 0.38 is statistically significant (P < 0.05,
n = 59), compounds with higher PCCs would be included as
neighbors of  this ‘seed’. Constructing clusters according to
this procedure often yields many compounds. As an example,
a COMPARE analysis based on a ‘seed’ selected from com-
pounds in Groups 1–6 from our analysis found statistically
significant ‘hits’ for over half of the 122 standard agents,
many of which were found to have large SVD distances.
Instances where statistically significant PCC values corres-
ponded to near SVD distances were observed for compounds
in Groups 8, 10, 11 and 12 and the single compounds in
Groups 14–24. The agreement between cluster membership
for the two approaches becomes increasingly better when
selection is based on higher PCC values. In support of this
observation, the correlation between PCC values above 0.75
and their SVD distances is 0.72 (P < 0.0001). Our application
of the SVD approach is based on its documented perform-
ance in the analysis of systems with data corrupted by noise.
While it is not our intention here to produce a detailed
comparison of these two methods, it is clear that compounds
with the highest pattern similarities will be found by both
methods. However, in circumstances where these patterns are
less similar, each approach can be expected to yield varying
degrees of agreement.

In summary, statistical clustering tools have been used to
analyze the growth inhibitory potency data available from the
NCI’s 60 tumor cell line screen. Analysis of the results for 122
standard anticancer agents finds that this set of compounds
can  be  clustered according to screening patterns into 25
groups, with eight of these groups consisting of DNA damag-
ing agents and the remaining groups consisting of agents
that act to inhibit either nucleotide biosynthesis or mitosis.
Structural similarities are found between compounds as-
signed to these two broad categories. Clustering of the cell
types based on their response to the 122 standard agents
divided the cells into two major branches which were further
subdivided into 21 groups. Strongest within-panel responses
were found for the RENAL, OVARIAN and LEUKEMIA
panels. The current analysis provides a reference for evalu-
ating larger data sets of compounds for similarities in their

Figure 4

Sensitivity analysis of  present  SVD results. Correlation coef-
ficients between the results found from SVD derived distances
based on original log(GI50) data, and those based on the randomly
perturbed log(GI50) data. The ordinate represents the percentage
error introduced upon perturbation of the original data set.
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screening patterns with respect to the standard 122 anticancer
agents. Analyses of these larger data sets may be able to relate
more precisely chemical substructure to activity.
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Appendix. Survey results from an analysis
of available crystal structures complexed
with ligands that are structurally similar to
the standard anticancer agents analyzed
here
Table IV lists the protein complexes identified here for
investigating this issue. Our intention here is not to provide a
complete list of all structural analogs within the Protein Data
Bank (PDB) (Bernstein et al., 1977), but to indicate the range
of protein  structures that are known to form complexes
with the structural analogs to the 122 anticancer agents.
The results presented in Table IV were obtained using the
SMILES-based searching tools available in the RELIBASE
part of the PDB browser (http://www.pdb.bnl.gov). The first
column in the table describes the types of enzymes,  the
second and third give the name and PDB identifier of each
enzyme, the fourth column is the ligand bound in the com-
plex, and the fifth column lists the anticancer agents that
are either identical or structural analogs to the standard 122
anticancer agents.

The results in Table IV directly indicate the sites of action
of many of the agents assigned to Groups 9–25 of our cluster
analysis. For example, crystallographic complexes exist for
most of the enzymes involved in pyrimidine biosynthesis
pathway. This pathway involves six enzymatically catalyzed
steps. The CAD gene encodes a trifunctional protein associ-
ated with the activity of the first three enzymes in this six-step
pathway: carbamoylphosphate synthase (EC 6.3.5.5), aspar-
tate transcarbamoylase (EC 2.1.3.2), and dihydroorotase
(EC 3.5.2.3)—also referred to as CPSase, ATCase and
DHOase, respectively. Crystallographic complexes exist for
acivicin (163501) bound to CPSase, PALA (224131) bound
to ATCase and brequinar (368390) bound to DHOase. In
addition, the sites of action of methotrexate (740) as well as
other folate by-products, include dihydrofolate reductase,
thymidylate synthase, AICAR transformylase and GAR
transformylase, all of which are included in the set of com-
plexes listed in Table IV. Purine biosynthesis occurs by de novo
pathways as well as from preformed nucleosides and
nucleotides via salvage reactions (Stryer, 1988). Phospho-
ribosyl kinases and transferases are involved in both
processes, and are found in crystallographic complex with
many of the nucleoside analogs included in this study. A
surprising finding includes the recent dimeric structure of
tubulin in complex with a taxane. A nucleoside analog is also
bound at the dimer interface between the α and β tubulin
subunits (Nogales et al., 1998a,b, 1999). Taken together, these
crystallographic complexes indicate that many of  the anti-
tumor agents included in these groups target one or in some
cases many proteins involved in nucleic acid biosynthesis
or mitosis. The cell screening patterns of these compounds,
when clustered according to the methods used here, clearly
separate the compounds from DNA-damaging agents.
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Table IV

Proteins complexed with ligands similar to anticancer agents

Enzyme class Name PDB ligand NSC

Ligase carbamoyl phosphate synthase 1jdb GLN chan 163501
″ 1jdb ADP 71851,71261

Hydrolase cytidine deaminase 1aln 3-deazacytidine 102816,143095
″ 1ctt dihydrozebularine 102816,143095,264880
″ 1ctu zebularine 148958,264880

Oxidoreductase dihydroorotate dehydrogenase 2dor flavin mononucleotide 148958,27640
″ 2dor orotic acid 148958
diaminopimelic acid dehydrogenase 1dap NDP 71851,71261
″ 1dap DA3 163501
cyclooxygenase 3pgh flurbiprofen 368390
dihydrofolate reductase 1ai9 NDP 71851,71261
″ 1ao8 MTX 740
″ 1dhf MTX 740

Transferase thymidylate synthase 1bjg 5-F-deoxyuridine 148958
″ 1bjg hydrofolic acid 623017,174121
″ 1vzd dideazafolic acid 134033
″ 2tdd hydrofolic acid 134033
″ 1tls 5-F-deoxyuridine 148958
″ 1lce hydrofolic acid 132483
amidotransferase carbamoyl phosphate
synthetase

1a9x GLN 163501

″ 1a9x ADP 71851,71261
″ 2tdd hydrofolic acid 134033
″ 1tls 5-F-deoxyuridine 148958
″ 1lce hydrofolic acid 132483
″ 1a9x GLN 163501
aspartate transcarbamylase 1acm PALA 224131
phosphoribosyl transferase 1opr orotic acid 148958,102816
″ 1sto orotidine 148958,27640
carbamoyl transferase 1rai cytidine 102816,27640
phosphoribosyglycinamide 1cde ribonucleotide 102816
formyltransferase 1gar U89 118994,71851,71261
methyltransferase 1v39 homocysteine 71261,71851
nucleotidyl transferase 1waf GMP 71261,71851
thioredoxin 1t7p guanosine 71261,71851
nucleoside phosphorylase 1a69 formycin 143095
″ 1a9t hypoxanthine 71851,71261
″ 1a9t ribose–1-phosphate 102816
diphosphate kinase 1be4 guanosine 71261,71851
diphosphate kinase 1kdn ADP 71261,71851
adenylate kinase 1dvr adenosine 71261,71851
thymidine kinase 1kim thymidine 27640
protein kinase inhibitor 1kpe adenosine 71261,71851
purine phosphorylase 1vfn hypoxanthine 71851,71261
UMP/CMP kinase 2ukd ADP C5P 71851,71261

Microtubules α/β tubulin dimer 1tub gtp,gdp 71851,71261
″ 1tub taxotere 125973
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