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for r A  = 0.1, 21 wt % for rA = 0.2, 11 wt % for r A  = 0.5, 
and 2 wt % for rA = 0.9 (Figure la). At copolymerizations 
carried out to higher conversion, these differences are still 
higher (Figure la). A figure identical with Figure 1 could 
be drawn for rA = 10, 5, 2, and 1.1, if x had the meaning 
of weight fraction of the macromonomer in the copolymer. 
For low r A  values (e.g., for ?-A = 0.1 and 0.2 in Figure la), 
the macromonomer is totally depleted from the reaction 
mixture before complete conversion is reached. A homo- 
polymer from the low molecular weight monomer A is 
formed in the last stages of polymerization. 

The starting composition of the monomer mixture, yo, 
affects the chemical heterogeneity of copolymers in such 
a way that for r A  < 1 the CCD broadens as the weight 
fraction yo of the ordinary monomer A is decreased (Figure 
2). The opposite is true for r A  > 1. 

7 5  w(il 2 5  

L 
Figure 2. (a, Top) Integral weight CCD, Z&), and (b, bottom) 
differential weight CCD, W ( x ) ,  for statistical copolymerization 
of an ordinary monomer A with a macromonomer M for different 
compositions of the starting mixture of monomers, yo, in terms 
of the weight fraction of monomer A. rA = 0.5; cf. also Figure 
1. 

(Figure 1). For example, for equal weights of comonomers 
in the starting mixture (Figure l), the copolymer prepared 
up to 50 wt % conversion will contain macromolecules 
differing by 25 w t  % in the content of the macromonomer 

Conclusions 

In copolymers prepared by statistical copolymerization 
involving a macromonomer, the conversion chemical 
heterogeneity may be significant. It is expected to be high 
if the monomer reactivity ratio of the ordinary monomer 
substantially differs from unity. Such a situation is es- 
pecially likely to occur when the structure of the macro- 
monomer end group strongly differs from that of the low 
molecular weight comonomer.6 

The extent of conversion chemical heterogeneity is in- 
dependent of molecular weight of the macromonomer and 
is determined only by the weight fraction of the macro- 
monomer in the starting mixture and by conversion. 
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ABSTRACT: The dynamic rotational isomeric states model is used to calculate the conformational (CACF) 
and first and second orientational (OACF) autocorrelation functions for polyethylene. Various sequence lengths 
and directions in the chain are considered. The CACFs are compared with Brownian simulation results of 
Weber and Helfand. Results of calculations on OACFs are analyzed by using the expressions proposed for 
local chain dynamics by Williams-Watts, Jones-Stockmayer, Bendler-Yaris, and Hall-Helfand. The relationship 
between the correlation times associated with the first and second OACFs is examined. 

Introduction 
It is now widely accepted that, among various processes 

contributing to chain relaxation on a local level, the tor- 
sional motion of skeletal bonds, leading to transitions 

0024-9297/89/2222-0431$01.50/0 

between isomeric states, plays a dominant role. 
A quantitative measure of local orientational motions 

is the orientational autocorrelation function (OACF), re- 
flecting the transient behavior of one or more vectorial 
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dP(t)/dt = A P(t)  (3) 

where A is the transition-rate matrix, with negative ele- 
ments on the diagonal and those in each column summing 
up to zero, from the principle of detailed balance. For 
determination of the elements of A, a suitable kinetic 
scheme for the passages between conformers must be 
constructed. The latter necessitates the analysis of N- 
dimensional conformational maps, for a sequence of N 
bonds subject to conformational transitions. However, a 
more convenient approach that has proven to be successful 
in predicting equilibrium properties is to restrict the 
analysis to interdependent pairs of adjacent bonds and 
deduce chain properties from the combination of the re- 
sults for the pairs. Consequently, eq 3 is initially solved 
for pairs of bonds. The corresponding rates in A are 
represented by Kramers' type expressions that are valid 
for high-friction Brownian motions, with activation ener- 
gies obtained from the heights of the saddles in two-di- 
mensional energy maps, in analogy to the kinetic treatment 
of conformational transitions proposed by Helfand.g A 
similarity transformation of A and suitable rearrangements 
lead to the transition or conditional probability matrix for 
the pairs, according to2 

0 2 )  = B(2) exp(L(2)t)[~(2)]-' (4) 
where L@) is the diagonal matrix of the eigenvalues of A@) 
and the columns in are the corresponding eigenvectors. 
The superscripts indicate the number of motional bonds. 

The conditional probability matrix 02) combined with 
the equilibrium probabilities yields the time-dependent 
joint probability matrix P(2)( t )  for the pair. Let p(aP,t;- 
y6,O) denote the element of P(2)( t )  corresponding to the 
joint occurrence of states ap at time t and yS at t = 0. Here 
a, 6, y, and 6 represent the possible isomeric states (t, g+, 
g-) that may be assumed by a skeletal bond. For chains 
with identical skeletal bonds the conditional probability 
p([/t) that a bond initially at state 5; will be at state {, at 
time t as well, is 

quantities rigidly embedded in the chain. A large group 
of experiments investigating local chain dynamics measures 
either the OACF or its Fourier transform, i.e., the spectral 
density, associated with specific vectors such as 13C-H 
bond or H-H internuclear vectors in NMR, the transition 
moment in fluorescence anisotropy decay, a group of dipole 
moments in dielectric relaxation, etc. Two types of ori- 
entational autocorrelation functions referred to as the first 
and second OACF's are defined respectively as 

Ml(t) = W " m ( t ) )  (1) 

(2) 

where m is the vector whose orientational motion is in- 
vestigated, the argument denotes the time, and the angular 
brackets stand for the ensemble average over all possible 
conformational transitions of the motional sequence to 
which m belongs. 

In addition to orientational correlation functions, the 
transient behavior of polymer chains may be described in 
terms of the conformational autocorrelation functions. The 
latter refers to the transition probability or conditional 
probability of Occurrence of a given isomeric state a t  time 
t for a skeletal bond randomly selected in the chains, given 
that initially that bond is in the same isomeric state. The 
time dependence of conformational correlation functions 
for trans (t) and gauche (g) states for polyethylene (PE) 
has been obtained through Brownian simulations carried 
out by Weber and Helfand.' 

In a recently introduced model2 describing local chain 
dynamics, the kinetics and stochastics of conformational 
transitions were treated in terms of real chain structure 
and properties. The treatment relies essentially on a model 
first proposed by Jerr~igan.~ The equilibrium properties 
of the polymer chain follow from the usual rotational 
isomeric states (RIS) model,4 i.e., a discrete number of 
configurations is considered. The model2 is accordingly 
referred to as the dynamic RIS model. It allows for the 
calculation of both orientational and conformational cor- 
relation functions. 

In the present study, the decay of the orientational and 
conformational correlations with time, predicted by the 
dynamic RIS model, are compared with the expressions 
proposed by Williams-Watts5 (WW), Jones-Stockmayer6 
(JS), Bendler-Yaris' (BY), and Hall-Helfand8 (HH). The 
expressions proposed by the latter three models contain 
two parameters reflecting the two essential features of local 
chain dynamics: (i) the diffusive propagation of orienta- 
tions along the chain; (ii) the vanishing of the propagation 
of orientations by various molecular mechanisms. 

It should be noted that the expressions of JS and BY 
have been derived for the second OACF. The HH ex- 
pression, on the contrary, has been proposed as an ex- 
tension of the analysis of the first conformational corre- 
lation functions to the OACFs. However, the common 
approach in the literature is to use any of the proposed 
expressions to interpret experimental results, irrespective 
of the type of OACF involved. The same attitude is taken 
in the present study, for the analysis of M l ( t )  and M2( t )  
obtained by the dynamic RIS model. 

A brief outline of the models and the method of calcu- 
lation is presented in the next section. The results of 
calculations are given and discussed in the third section. 

Models 
Dynamic RIS Model. In the dynamic RIS model,2 the 

time-dependent probability of occurrence of isomeric 
configurations is expressed as a column vector P(t) obeying 
the master equation 

M d t )  = 3/2((m(0).m(t))2) - Y2 

where PO([) is the equilibrium probability of state { and 
the summations are performed over all isomeric states for 
the indicated bond. 

Suitable combination2 of the elements of P@)( t )  leads 
to the time-dependent joint probability matrix P(M(t) for 
N bonds in motion. The latter gives a complete description 
of the dynamic behavior of the sequence. Accordingly, the 
OACFs in eq 1 and 2 are computed by using the ijth ele- 
ment P,.'M(t) of P ( M ( t )  in 

Ml(t) = CCPij(M(t)(mi.mj) (6) 

( 7 )  

Here the subscripts i and j refer to specific configurations 
of the motional sequence, and the summations are per- 
formed over all configurations (3N of them for N bonds in 
motion with 3 states available to each). According to the 
above formulation (eq 6 and 7),  all time dependence is 
accounted for by Pi,(t), whereas mi and mi are functions 
of internal configuration only. 

Williams-Watts Formulation. This is an empirical 
expression of the form 

Mww = exp[ - ( t /~ )~ l  (8) 

The two parameters T and P may be identified, respec- 

M2(t) = CCPij'"(t)[3/22(mi.mj)' - 1/21 
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tively, as an effective relaxation time and a factor ac- 
counting for the deviations from Debye behavior (with ,d 
= 1). 

Jones-Stockmayer Model. Both Jones-Stockmayer 
and Bendler-Yaris theories (see the following subsection) 
originate from the three-bond motion model first proposed 
by Valeur and collaborators.1° The latter, referred to as 
the VJGM model, uses a continuous limit approximation 
that leads to an expression with unrealistic infinite slope 
of the OACF at  t = 0. Using the same model, Jones and 
Stockmayer removed this shortcoming by introducing an 
arbitrary truncation of the coupling of the motion along 
the chain while keeping the discrete form of the one-di- 
mensional orientational diffusion equation. 

In the absence of overall tumbling and Woessner type 
anisotropic internal rotation, the OACF proposed by Jones 
and Stockmayer reduces to 

Mjp,(t) = C G k  exP(-wh$) (9) 
where X k  and Gk are found from the sharp cutoff solution 
of the three-bond jump equation as 

X k  = 4 sin2 [(2k - 1 ) ~ / 4 s ) ]  

G k  = l / s  + (2/s)[xexp(-yq) cos [(2k - l)?rq/2s]] 

where y = 2 In 3 and s = (m + 1)/2. The two adjustable 
parameters in the theory are w, the characteristic fre- 
quency or rate for the three-bond jump model, and m, the 
number of coupled units a t  both sides of a central mobile 
unit. The parameter m ensures the above-mentioned 
truncation. 

Bendler-Yaris Model. An alternate path to the VJGM 
treatment was proposed by Bendler and Yaris by intro- 
ducing a short- and a long-wavelength cutoff to the con- 
tinuous mode spectrum. Thus two correlation times 72 and 
71 characteristic of long- and short-wavelength cutoffs, 
respectively, are present in the final expression for the 
OACF as 
M,,(t) = ( T / ~ ) ' / ~ [ T T ' / ~  - ~ ~ - ' / ~ ] [ e r f c  ((t/71)1/z) - 

erfc ( ( t / ~ ~ ) ' / ~ ) ]  (10) 

Here erfc is the complementary error function. 
Hall-Helfand Model. Recently, Hall and Helfand 

proposed a model for conformational dynamics taking into 
account correlated pair transitions and isolated transitions 
occurring at frequencies X1 and &, respectively. The pair 
transitions ensure the propagation along the chain while 
the isolated transitions are responsible for the damping. 
For the simplified case of a one-dimensional chain of 
two-state elements, they derived the expressions of con- 
formational correlation functions as 

MHH(t) = exp(-2Xot) exp(-2Xlt)lo(2Xlt) (11) 

where Io is the modified Bessel function. Although this 
expression was originally derived as the conformational 
correlation function, it has proven to fit well both the 
orientational and conformational decay curves obtained 
from experiments and Brownian simulations. The recent 
study by Lin et al.," which shows a connection between 
the JS solution to the three-bond jump equation and the 
HH expression, supports the use of the latter for describing 
OACFs. 

Results of Calculations and Discussion 
Conformational Autocorrelation Functions 

(CACF). The conditional probability p (  {/ {) of occurrence 
of a given isomeric state for a bond at time t ,  given the 
identical initial state, is calculated according to eq 5 in the 
dynamic RIS model. Calculations are performed for 
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Figure 2. Autocorrelation function for the gauche state of a bond 
in polyethylene. See legend to Figure 1. 

polyethylene, for the trans and gauche states. Thus { is 
replaced by t and g, respectively. In the limit as time - 
00,  p(t/t) and p(g/g) will be converging to the equilibrium 
probabilities of the trans and gauche states, respectively. 
The conditional probabilities are properly normalized to 
ensure the decay to zero, in accordance with the similar 
approach by Weber and Helfand.' The resulting (CACF) 
curves for T = 330,372, and 425 K are shown in Figures 
1 and 2. The curves have been obtained by using the same 
energy parameters and preexponential factor (2.77 X 
101'/s) as those previously a d ~ p t e d . ~ J ~ J ~  The filled circles 
represent results from Brownian simulations carried out 
by Weber and Helfand. It should be noted that interde- 
pendence between second neighbors along the backbone 
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0.2 0 4  0.6 
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Figure 3. Conditional probability p ( ( / ( )  that a bond is in state 
{both at time 0 and t. Calculations are for polyethylene at 330 
K. 

Figure 4. Sequence of six bonds with four bonds in motion. The 
first two bonds are figed in the XY plane of a fured reference frame 
OXYZ. The x and y axes of the sixth bond based frame is also 
shown. The y axis is chosen to make an acute angle with the fifth 
bond. The z axis is normal to the plane of bonds 5 and 6. 

(counter rotations, etc.), which is pointed out to play a 
major role in local chain dynamics, is not directly consid- 
ered in the present computation scheme. Also the pa- 
rameters adopted in Brownian simulations are somewhat 
different from those used in the present dynamic RIS 
model. The latter neglects the deformation of bond lengths 
and bond angles and limits the analysis to the torsional 
motion of skeletal bonds, which is asserted to be the 
dominating mechanism for chain relaxation. In view of 
the several approximations in the two approaches, the 
agreement between the dynamic RIS model and the 
Brownian simulations may be considered as rather satis- 
factory. 

Comparison of the decay of the gauche and trans ACFs 
from the normalized curves in Figures 1 and 2 is somehow 
misleading. Indeed, the apparent decay rate for the gauche 
state is slower than that of the trans state. In reality, from 
the principle of detailed balance, states with lower equi- 
librium probabilities (gauche in the present case of PE), 
will exhibit a stronger tendency to change their state, i.e., 
their transition rate will be higher. The correct comparison 
of the behavior of the t and g states has to be carried out 
before normalization of the CACFs. This is shown in 
Figure 3, where the expected more rapid decay of p(g/g) 
is clearly seen. 

Orientational Autocorrelation Functions. The de- 
cay of the first and second OACFs with time for PE is 
computed according to the dynamic RIS model, with eq 
6 and 7, respectively. Calculations are performed for the 
three vectors spanning the nth bond-based frame (Figure 
4) of a series of sequences in motion varying in length. The 

0 0.2 0.4 0.6 0.8 
t (ns) 

Figure 5. Comparison of the dynamic RIS calculations (solid 
curves) for M l ( t )  and M&) with results of the WW expression 
(dashed curves). Calculations are for n = 6, T = 300 K for a vector 
along the bond axis. 

first two bonds of the sequence are held fixed in a labo- 
ratory-fixed coordinate system while the others are free 
to assume any orientation compatible with the local con- 
figurational stochastics of the specific chain. The resulting 
autocorrelation curves are analyzed in comparison to the 
four expressions given by eq 8-11. The two parameters 
in each expression are optimized to yield the decay curves 
that best approximate the OACFs resulting from the dy- 
namic RIS model. The procedure is based upon deter- 
mination of the pair of parameters that minimizes the 
mean-square deviation x2.  The latter is defined as 

(12) 

where A4, denotes the OACF calculated from model XX 
(i.e., WW, JS, BY, HH), M(ti) refers to MI@) and/or M2(t) 
calculated at time ti, by the dynamic RIS model. 

It should be noted that in the dynamic RIS model 
correlations between successive bonds are taken into ac- 
count in such a way that only the intramolecular contri- 
butions to relaxation are included. As a result, the cal- 
culated OACFs do not go to zero as t -+ m but go to an 
asymptotic value. In the real situation, the tumbling of 
the overall molecule or large portions of the molecule takes 
place and leads to further relaxation at long times; con- 
sequently the real OACF decays to zero. Within the time 
scale of 0-0.8 ns, the effect of tumbling is negligible if we 
assume for example T~ = 10-8-10-7 s, where 70 is the cor- 
relation time for overall tumbling. In fact, the overall 
tumbling is dominant for low-molecular-weight com- 
pounds, but as the molecular weight increases local motions 
take precedence, as pointed out by Matsuo and collabo- 
r a t o r ~ ~ ~  on the basis of NMR experiments where the time 
scale is of the order of s, as in the present study. The 
absence of overall tumbling is therefore of no significant 

x2 = C ( [ M ( t i )  - Mxx(ti)12/M(ti)] 
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Figure 6. Comparison of the dynamic RIS calculations (solid 
curves) for MI@) and M2(t)  with results of the JS model (dashed 
curves). Calculations are for n = 6, T = 300 K for a vector along 
the bond axis. 

consequence in the interval 0-0.8 ns. We accordingly re- 
strict our comparison to this time interval in the following. 

Figures 5-9 depict the OACF curves calculated by the 
dynamic RIS model for the sixth bond (n = 6) from a fixed 
origin in PE, and those obtained with the parameters 
minimizing x2 for each functional form (i.e., eq 8-11). Solid 
curves follow from the dynamic RIS model. Dashed curves 
are obtained by using the best-fitting parameters in WW 
(Figure 5) ,  JS (Figure 6), BY (Figure 7), and HH (Figures 
8 and 9) expression. In Figures 5-7, the vertical axes on 
the right and on the left correspond to the first and second 
OACFs for the x-component, respectively. Curves in 
Figures 8 and 9 represent the OACFs associated with the 
x, y, and z directions in bond-based coordinate systems, 
as shown in Figure 4. 

A list of the best-fitting parameters and corresponding 
x2  is presented in Table I. Results are tabulated for n = 
6 and 8 and unit vectors along x, y, and z directions. The 
reported x2 values are obtained from eq 12, with ti (ns) = 
O.O5i, where i takes the values from 1 to 16. 

From the analysis of the curves in Figures 5-9 and Table 
I, it may be observed that the OACFs obtained by the 
dynamic RIS model may be approximated to a certain 
extent by all of the four expressions considered. Best fits 
are achieved with HH and BY expressions. 

The decay of the OACFs with time cannot be repre- 
sented by single exponentials, as is well established from 
a large number of experimental and theoretical studies. 
In fact an exponent p, different from unity, is definitely 
required to minimize x2 when the Williams-Watts ex- 
pression is used. Also there is a need for the introduction 
of a damping parameter, regardless of the model selected 
except for M,(t)  of bond vectors for n 5 6, where the 
parameters l / A o  and r2 in HH and BY models, respec- 
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Figure 7. Comparison of the dynamic RIS calculations (solid 
curves) for M,(t) and M&) with results of the BY model (dashed 
curves). Calculations are for n = 6, T = 300 K for a vector along 
the bond axis. 

0.2 0.4 0.6 0.8 
t fn9i 

Figure 8. Comparison of the dynamic RIS calculations (solid 
curves) for MI@) with results of the HH model (dashed curves). 
Calculations are for n = 6, T = 300 K for three directions along 
x ,  y ,  z axes of the bond-based frame. 

tively, are relatively large (for n = 5, l / X o  = 500 ns and 
T~ = 22 ns). In this particular case, the OACF may be 
reproduced to a good approximation by neglecting the 
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Table I 
ww JS BY HH 

@ 7, ns x 2  m l / w ,  ns x2 T ~ ,  ns rl, ns x2 I/&, ns I / A ~ ,  ns x2 

8 0.53 0.125 0.070 5 0.122 0.062 2.0 0.032 0.031 1.4 0.10 0.022 
y 6 0.64 0.21 0.037 3 0.240 0.041 2.0 0.059 0.013 1.4 0.17 0.008 

8 0.60 0.12 0.059 3 0.156 0.106 1.0 0.037 0.026 0.72 0.11 0.027 
2 6 0.84 0.15 0.007 3 0.140 0.047 0.39 0.071 0.003 0.34 0.21 0.005 

8 0.84 0.105 0.019 3 0.101 0.043 0.27 0.050 0.010 0.24 0.16 0.005 
M2 x 6 0.64 0.18 0.046 3 0.208 0.061 1.43 0.056 0.015 1.03 0.15 0.017 

8 0.66 0.10 0.056 3 0.120 0.097 0.59 0.033 0.032 0.45 0.095 0.028 
y 6 0.63 0.20 0.042 3 0.241 0.005 2.0 0.055 0.014 1.47 0.16 0.011 

8 0.63 0.11 0.065 3 0.135 0.096 1.0 0.037 0.026 0.56 0.10 0.025 
2 6 0.89 0.13 0.006 3 0.119 0.073 0.27 0.077 0.004 0.25 0.25 0.003 

8 0.91 0.10 0.008 3 0.083 0.033 0.385 0.056 0.002 0.19 0.145 0.007 

Mi x 6 0.56 0.255 0.043 5 0.240 0.016 10 0.050 0.011 10 0.16 0.0045 

1.0, 1 
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~ 
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o i  
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Figure 9. Comparison of the dynamic RIS calculations (solid 
curves) for M&) with results of the HH model (dashed curves). 
Calculations are for n = 6, for three directions along x ,  y, z axes 
of the bond-based frame. 

t ( n s )  

contribution of r2 or 1/A,, to relaxation, i.e., setting them 
equal to infinity. However, calculations indicate that as 
n increases, finite 1/& or 72 values are required to achieve 
best curve fittings. 

Comparison of the best-fitting parameters from various 
models shows that the time parameter 7 in WW and l / w  
in JS are very close to each other for both OACFs in all 
directions, while the damping parameters 72 and l/A,, in 
BY and HH, respectively, are of comparable magnitude. 
On the other hand, the parameter l/& accounting for the 
damping of the motion is a t  least 1 order of magnitude 
larger than l / X l ,  in agreement with previous curve-fitting 
calculations carried out by Helfand et al. to reproduce the 
decay of the OACFs resulting from their Brownian simu- 
lations. 

It has been recently shown12 that the decay of the first 
and second OACFs occur within about the same time 
range. Let Ml,(t) and M2,(t) represent the OACFs for v 
= x, y, or z, i.e., the unit vectors along the coordinates of 
the local frame investigated. It has been pointed out1* that 
M&) decays slower than M&) for PE while relative 
behavior of the corresponding fmt OACFs is inverted. The 

Table I1 
e(Ml)/e(M2) 

X Y 2 

0 n = 6  n = 8  n = 6  n - 8  n = 6  n = 8  
7 (WW) 1.42 1.25 1.05 1.09 1.15 1.05 
A1-l (HH) 1.07 1.05 1.06 1.10 0.84 1.10 
l / w  (JS) 1.15 1.02 1.00 1.16 1.18 1.22 
rl (BY) 1.00 0.97 1.07 1.00 0.92 0.89 

Table I11 
Comparison of 8‘ Values from Various Models 

n - 8  

7 (WW) 0.55 0.65 0.62 0.63 0.84 0.90 
11x0, ns (HH) 1.40 0.45 0.72 0.56 0.24 0.16 
m (JS) 3 5  3 3 3 3 
i2, ns (BY) 10.0 1.43 2.0 2.0 0.39 0.27 

present analysis provides an opportunity to compare MI&) 
and M2,(t) on more quantitative grounds. 

For isotropic motion, the correlation times associated 
with Ml,(t) are 3 times as large as those from M2,(t) .  In 
the case of the models derived for the dynamic behavior 
of the polymeric chains, the relationship between the 
correlation times associated with Ml,(t)  and Mb(t)  is un- 
known. The dynamic RIS calculations give an insight into 
this question. Let us first consider the correlation times 
related to the conformational changes propagating along 
the chain. We have listed in Table I1 the ratio of these 
correlation times B(Ml) and B(M2) associated with Ml,(t) 
and M2,(t) ,  respectively, for n = 6 and 8, obtained from 
the fitting with the various models (Table I). It may be 
observed from the tabulated values that B(Ml) exceeds 
8(M2) by about lo%, in general, regardless of the direction 
of the investigated vector with respect to the backbone. 

As to the parameters that reflect the damping or 
localization of the motion, their numerical values are often 
quite different for M J t )  and M2,(t). For this reason, we 
have listed in Table I11 the respective values B’(Ml) and 
$‘(M2) obtained for n = 8 from the fitting with the various 
models. It is found that 8’ values relative to the bond 
vectors x differ considerably for Ml,(t) and M&), while 
values for vectors in the y and z directions are almost 
constant. 

To examine the effect of the sequence lengths on the 
OACFs, we have limited our analysis to the fitting pa- 
rameters of the HH expression for the bond vector x. A 
first analysis carried out over the time range 0 . 9  ns has 
shown significant decrease in the correlation times with 
increasing n. In the interest of performing a consistent 
analysis for each value of n, the fitting has been performed 
over a time interval corresponding to about 98% of full 
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against n, in Figure 11, for the first (solid line) and the 
second (dashed line) OACFs. The apparent effect of an 
increase in n is a substantial decrease in the correlation 
time 1 /XP 

Conclusion 
The results reported in this work first demonstrate that 

in spite of the limited lengths of the sequences considered 
in the dynamic RIS calculations the resulting CACFs agree 
satisfactorily with those obtained by Brownian simulation 
on a ring chain with 200 bonds. Second, the calculated 
OACFs can be well fitted by the previously proposed 
Bendler-Yaris and Hall-Helfand expressions. Further- 
more, it appears that for a polymer chain, the two corre- 
lation times, characteristic of the conformational changes, 
associated with the first and second OACFs are very close 
to each other. This feature is in strong contrast to that 
for isotropic motion (the Debye model) where the corre- 
lation times differ by a factor of 3.15 This follows from the 
fact that rotational reorientations are of the jump-diffusion 
type where the vector of interest reorients by a series of 
discontinuous jumps, resulting from rapid excursions of 
bonds between rotational isomeric states. This is in con- 
trast with the Debye model, which is based on infinitesimal 
jumps according to which distribution of jump angles are 
highly peaked for small angles and 72/71  = 1/3. 
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